
Blackbox Fuzzing of Distributed Systems
with Multi-Dimensional Inputs and Symmetry-Based

Feedback Pruning

Yonghao Zou
Beihang University
Peking University

zouyonghao@live.cn

Jia-Ju Bai∗
Beihang University
baijiaju@buaa.edu.cn

Zu-Ming Jiang
ETH Zurich

zuming.jiang@inf.ethz.ch

Ming Zhao
Arizona State University

mingzhao@asu.edu

Diyu Zhou
Peking University

diyu.zhou@pku.edu.cn

Abstract—This paper presents DistFuzz, which, to our knowl-
edge, is the first feedback-guided blackbox fuzzing framework
for distributed systems. The novelty of DistFuzz comes from two
conceptual contributions on key aspects of distributed system
fuzzing: the input space and feedback metrics. Specifically,
unlike prior work that focuses on systematically mutating faults,
exploiting the request-driven and timing-dependence nature of
distributed systems, DistFuzz proposes a multi-dimensional input
space by incorporating regular events and relative timing among
events as the other two dimensions. Furthermore, observing that
important state changes in distributed systems can be indicated by
network messages among nodes, DistFuzz utilizes the sequences
of network messages with symmetry-based pruning as program
feedback, which departs from the conventional wisdom that
effective feedback requires code instrumentation/analysis and/or
user inputs. DistFuzz finds 52 real bugs in ten popular distributed
systems in C/C++, Go, and Java. Among these bugs, 28 have been
confirmed by the developers, 20 were unknown before, and 4 have
been assigned with CVEs.

I. INTRODUCTION

Various kinds of critical distributed systems, such as dis-
tributed databases (e.g., ClickHouse [7] and RethinkDB [47])
and distributed coordination systems (e.g., ZooKeeper [20]
and etcd [13]), provide fundamental support for analytical and
computational tasks, and form the backbone of modern data
center infrastructures [10], [16], [61]. However, they are prone
to have subtle bugs, causing large economic losses [3], [4].

Prior work has applied fuzzing, a promising testing tech-
nique [2], [14], [19], [22], [70], to distributed systems. A pio-
neer work is Jepsen [21], a blackbox fuzzer that is well-known
for its effectiveness in finding consistency violations. Based on
user-provided schedule generators, Jepsen randomly generates:
1) workloads to drive the system, and 2) faults injected into the
systems. CrashFuzz [15] and Mallory [37] are greybox fuzzers
that advance Jepsen by using different feedback to guide the
mutation of injected faults. CrashFuzz uses edge coverage, a

Jia-Ju Bai is the corresponding author.

popular metric for single-node systems [2], [14]. The feedback
in Mallory requires the user to annotate code blocks that
are considered to be important. Afterwards, during fuzzing,
Mallory collects two types of events: 1) the invocation of user-
annotated code blocks, and 2) network messages among nodes.
The sequence of these events is used as feedback, and Mallory
considers an event sequence is uninteresting, if it is too similar
to a previous one.

However, the above prior work still suffers from important
limitations on two key aspects of fuzzing effectiveness: 1)
fuzzing input, and 2) feedback metric. Regarding fuzzing input,
given the huge search space, the random generation approach
used by Jepsen is highly ineffective. Furthermore, only mutat-
ing and injecting faults based on feedback, as CrashFuzz and
Mallory do, can miss many bugs, as we elaborate subsequently
and showcase in Figure 6 and Figure 7.

Regarding fuzzing feedback, the edge coverage used by
CrashFuzz is ineffective for distributed systems. This is be-
cause, unlike single-node systems, distributed systems often
execute almost the same code for requests, making edge
coverage saturates after exploring only a few states [37], and
thus, ineffective for distributed systems. Mallory’s feedback
requires laborious and error-prone user annotations and more
importantly, as we elaborate subsequently, misses interesting
states as well as explores redundant states.

This paper presents DistFuzz, which, to the best of our
knowledge, is the first feedback-guided blackbox fuzzing
framework for distributed systems. Table I compares DistFuzz
with other fuzzers. The novelty of DistFuzz comes from
the two conceptual contributions on testing input space and
feedback metric, which depart from the conventional wisdom
in prior distributed system fuzzers.

Conceptual contribution #1: extending input space with
regular events and timing intervals. For the input space
of distributed systems, our new insight is that, faults are just
one dimension of it. In essence, faults are rare internal events
to trigger state changes in distributed systems. We identify
another two important input dimensions: 1) client requests and
control commands, which, in contrast to faults, are external
events to trigger state changes; and 2) relative timing among
different events, since, for a distributed system, same events
with different timing are likely to result in different states (ex-

Network and Distributed System Security (NDSS) Symposium 2025
24 February - 28 February 2025, San Diego, CA, USA
ISBN 979-8-9894372-8-3
https://dx.doi.org/10.14722/ndss.2025.241912
www.ndss-symposium.org

TABLE I: Conceptual comparison of testing frameworks of distributed systems.

Feature DistFuzz Jepsen Mallory CrashFuzz
Fuzzer Type Blackbox Blackbox Greybox Greybox
Systematic Mutated Events Regular, fault events and time intervals Fault events Fault events Fault events
Feedback Message sequences None User annotations + message sequences Code coverage
Pruning Method Symmetry based None Similarity based None
Bug Reproducibility Support Not support Not support Not support
Overhead Low Low Intermediate High

plained in §II). To thoroughly test distributed systems, fuzzing
requires systematically co-mutating all three dimensions.

With the above observation, DistFuzz uses a sequence of
events as input, where each event can be either a fault or a
regular event. In addition, DistFuzz associates each event with
a timing interval, denoting how long DistFuzz should wait
to apply this event after the previous one. As a result, the
generated input is inherently fine-grained, potentially covering
all possible combinations of the three dimensions. While the
high-level idea of fuzzing regular events and/or timing interval
has been proposed by fuzzers targeting other domains (e.g.,
OS [50], [56], [58], library [2], [6], [19], and networking [33],
[45], [51], [55], [70]), together with the novel feedback ap-
proach presented below, DistFuzz validates its effectiveness
for fuzzing distributed systems.

Conceptual contribution #2: proposing network message
sequences with symmetry-based pruning as fuzzing feed-
back. DistFuzz uses a novel and effective feedback approach
based on the following observations. First, user-annotated code
blocks, as required by Mallory, do not improve the quality
of the feedback over network messages, since almost all
important state changes in a distributed system are reflected by
network messages. As an intuitive explanation, state changes
in consensus algorithms either 1) are triggered by receiving
certain messages or 2) result in sending out messages. As a
result, they are all captured by changes in network message
sequences. In fact, we surveyed all the code blocks annotated
by Mallory’s authors and found that as high as 91% is covered
by network messages.

Second, pruning feedback based on similarity, as seen in
Mallory, is ad-hoc and ill-suited for distributed systems. Such
an approach can mistakenly prune interesting states, since,
as we explain in §III-C, two drastically different states in
a distributed system often output similar message sequences,
which will be pruned by Mallory. Such an approach will also
explore redundant states, due to the widely-existed symmetry
in distributed systems. As an example, one state where A is
a leader and B is a follower is symmetric to (and essentially
the same as) another state where A is a follower and B is a
leader. Without considering symmetry, one would view such
states as different states, resulting in redundant exploration and
downgrading the performance of the fuzzer.

Leveraging the first observation, DistFuzz transparently
captures network messages as feedback. With the second
observation, DistFuzz departs from prior approaches by sys-
tematically pruning feedback leveraging two common types
of symmetry in distributed systems: order symmetry and role
symmetry. Order symmetry represents the cases where the
order of messages for different nodes is not important (e.g.,
when a node starts an election process, the order of votes it

receives does not matter). Similarly, role symmetry describes
that, two states only differ in the roles of the nodes (e.g., A is
a leader and B is follower vs. A is a follower and B is a leader)
should be considered as redundant. In addition, to prevent
the feedback from being too sensitive to trivial states (e.g.,
timestamp) in network messages, observing that messages of
different types are likely to have different lengths, DistFuzz
abstract the content of the messages with the message length.

We built a prototype of DistFuzz with around 7300 lines
of C++ code. We used checkpointing and restoring to maxi-
mize fuzzing throughput while leveraging offline deterministic
record and replay [42] to reliably reproduce founded bugs
to eliminate false positives. We evaluated DistFuzz with 10
mature and widely-used distributed systems. Our evaluation
demonstrates that the above fuzzing designs collectively make
DistFuzz effective, finding 52 real bugs, with 28 confirmed
by the developers, and 20 previously unknown. Among the
confirmed bugs, 4 have been assigned with CVEs. By incorpo-
rating regular events and timing intervals into the input space,
DistFuzz can find 11% more bugs. The feedback mechanism
in DistFuzz does not require human annotations, reduces the
total bug-finding time by 249.67 hours in average and finds 2
more bugs (§V-D).

In summary, we make the following contributions:

• New approaches: We make two conceptual contributions
on fuzzing input space and feedback methods.

• Practical realization: We develop DistFuzz, a novel and
effective feedback-driven black-box fuzzing framework
based on the above ideas.

• Promising results: DistFuzz in total finds 52 real bugs,
28 of which have been confirmed by the developers, 20
were unknown before, and 4 have been assigned CVEs.

We have released DistFuzz and evaluation results at https:
//github.com/zouyonghao/DistFuzz.

II. BACKGROUND AND MOTIVATION

A distributed system is a large and complex system whose
components run as different processes located on different
computers (or nodes) [62]. These processes execute almost
the same code, communicate and coordinate each other with
network messages, and may have different runtime states.
Despite the great diversity of distributed systems (e.g., different
functionalities, runtime libraries, or programming languages),
techniques used in DistFuzz are based on a few common
natures of distributed systems. Subsection II-A presents these
common natures. Subsection II-B motivates why we design
DistFuzz as a blackbox fuzzer and Subsection II-C presents
prior work on fuzzing distributed systems.

2

https://github.com/zouyonghao/DistFuzz
https://github.com/zouyonghao/DistFuzz

Distributed system

Network

Init, Put, Get...

Filesystem

Node1 Node2 Node3 Noden......

NetFail, FileFail, NodeCrash...

Client Control tool

Fig. 1: Multi-dimensional input space of a distributed system.

A. Common Natures in Distributed Systems

Input events. As demonstrated by prior work, testing inputs
to distributed system are various kinds of input events, as
shown in Figure 1. Input events consist of two types. The
first type is regular events. Examples of them include client
requests (e.g., read and write requests in a distributed file
system), and management commands from the user (e.g.,
adding or removing nodes in a distributed system). In addition,
since a common design goal of distributed systems is to
tolerate various kinds of faults [31] (through techniques such
as replication and consensus algorithms [27], [43]), another
type of input to the distributed system is various fault events,
such as node crash and network partitioning.

Network messages capture important state changes. In
distributed systems, the history of network messages can
effectively capture the overall system state changes. This is
because each node’s execution state is often affected and/or
reflected by the network messages. As a motivating example,
consider the protocol of consensus algorithms (e.g., Paxos [27]
and Raft [43]), that are widely used in modern distributed
systems. All state changes specified in the protocol are either
triggered by 1) receiving certain network messages (e.g., in
Raft, a node in the candidate state turns into the follower state
when the node receives a message from the current leader
with a higher term); or 2) timeout, which in turn makes nodes
send out network messages (e.g., if a leader node elapses the
heartbeat timeout, it sends network messages to maintain its
authority and prevent others starting new elections). In both
cases, the important state changes can be captured by the
network messages among nodes.

Timing-dependence. Distributed systems are highly timing-
dependent where two sequences of input events with the same
events, but different relative timing are likely to result in
different execution states. A key reason behind this is that
distributed systems heavily use the timeout mechanism, where
the system waits for certain events within the time window.
The occurrence or non-occurrence of these events within the
time window drives the system into different states.

Taking Raft as an example, where the two key timeouts are
the heartbeat timeout and the election timeout. If a follower
node does not receive a heartbeat message from the leader
within the heartbeat timeout, it becomes a candidate and
initiates a new election. Otherwise, it remains a follower.
Therefore, the timing of the heartbeat message arrival relative
to the timeout affects the system state. Similarly, during the
election timeout, if a candidate node receives a majority of

votes, it becomes the new leader; otherwise, it remains a
candidate and starts a new election round. Thus, the timing
of vote messages relative to the election timeout also impacts
the system state.

B. Blackbox Fuzzing for Distributed Systems

Blackbox fuzzing is widely used and has shown great
success in detecting bugs in non-distributed systems [11], [30],
[38], [59], [68]. A key advantage of blackbox fuzzing is the
minimal manual effort for deployment since it requires no user
annotations nor code analysis and instrumentation.

Furthermore, compared to single-node systems, a blackbox
fuzzer is more critical for distributed systems because of
the following three reasons. First, distributed systems often
involve complex logic, which may even overwhelm their
developers. Thus, manual code annotations are likely to be
error-prone and may lead to false positives. Second, distributed
systems are highly non-deterministic [17], [44], and techniques
like code instrumentation, which can cause high overhead
(e.g., 307% [15]) for distributed systems, inevitably perturb
their execution, potentially masking bugs that would occur
in production environments where such instrumentation is
absent [23]. Third, there are several popular programming
languages used for developing distributed systems, such as
C/C++, Java, Go, and Rust. Testing frameworks that depend on
source code analysis or code instrumentation incur significant
manual effort in porting their functionality across these diverse
systems, limiting their deployment in industrial settings.

C. Prior Work on Fuzzing Distributed System

This subsection discusses prior work on fuzzing distributed
systems (i.e., Jepsen [21], Mallory [37], and CrashFuzz [15])
focusing on two fundamental aspects: 1) generating input
events; and 2) fuzzing feedback.

Generating input events. In summary, prior work generates
input events by using novel approaches to effectively mutate
fault events (§II-A). In terms of regular events (§II-A), prior
fuzzers either make them fixed (as in CrashFuzz) or randomly
generated (as in Jepsen and Mallory) them. These approaches
follow the conventional wisdom that fault events, by their
natures, are rare and thus are more likely to trigger bugs [65].
Below we detail how the prior fuzzers generate testing input.

Before the fuzzing campaign starts, CrashFuzz takes a
sequence of concrete regular events as input, and they are used
to drive the SUT during the whole fuzzing process. Jepsen and
Mallory takes as input a set of regular event types. Afterward,
during fuzzing, concurrent with the fault injection process
discussed below, Jepsen and Mallory randomly choose certain
events from this set, and concretize them to drive the SUT.

In each iteration of the fuzzing, the fuzzer decides 1) which
fault event to inject and 2) where (i.e., after which event)
should the fault event be injected. CrashFuzz and Mallory
make these decisions based on their fuzzing feedback, while
Jepsen makes random decisions. The fuzzer stops injecting
fault events until a pre-defined condition (e.g., the number of
fault events reaches a threshold) is met.

Fuzzing feedback. CrashFuzz [15] uses the popular edge
coverage as its feedback metric. Despite its great success

3

Runtime
info

Bug reports

Runtime
monitor

Message sequence

Test case
generator

Checkpoint
manager

Event handler

Event sequences

Checkpoint

Bug checkers

Input for
init/events

1

2

4

Distributed
system

under test

Execute5

7

6

C++ code/
shell scripts

Restore3

Bug detect8

Record/replay

Reproduce9

Event sequence

Fig. 2: The workflow and architecture of DistFuzz. User inputs
are marked in green, DistFuzz’s components are marked in
black, and the fuzzing loop steps are marked in red.

in fuzzing single-node systems [2], [14], [19], Mallory [37]
reported that code coverage is unsuitable for distributed system
fuzzing. This is because distributed systems are request-driven
and execute almost the exact code for every request. As a
result, code coverage saturates very quickly, limiting the fuzzer
to explore only a small number of different states.

Mallory proposes a feedback metric based on two types
of events: (1) invocation of user-annotated interesting code
blocks; and (2) network messages among nodes. The default
mechanism 1 in Mallory is to collect these events with relevant
information (e.g., the ID of the node that invokes the code
blocks; the sender, receiver, and the content of the network
messages.) from each node, sort them by their occurrence
time, and use the sorted events as fuzzing feedback. To avoid
exploring redundant states, Mallory prunes an event sequence
if it is too similar to a previous one (e.g., an event sequence
only differs from the previous one in the receiver of one
message). Mallory measures similarities using a hash function
that maps similar input values to similar hash values.

III. THE DISTFUZZ FUZZING FRAMEWORK

This section presents DistFuzz, a novel and effective
blackbox fuzzing framework for distributed systems. This
section with an overview of DistFuzz (§III-A), followed by
the contributions DistFuzz makes to advance state of the art.
We present the remaining parts of DistFuzz in Section IV.

A. DistFuzz Overview

Figure 2 shows the workflow and architecture of DistFuzz.
1 To use DistFuzz, a user provides certain application-specific
information including (i) commands to initialize the system
under test (SUT), which also specify the heartbeat timeout
and the election timeout (§II-A) of the SUT; (ii) a status check
command with the expected return value, which DistFuzz uses
to detect if the SUT has been successfully initialized; (iii) the
formats for regular events (§IV-B) for the SUT; and (iv) three
tunable parameters, namely, the maximal length of the event
sequence, the maximum value of the timing intervals and the
fuzzing granularity of the timing intervals (§III-B).

1Mallory also allows users to specify custom mechanisms for the feedback.
We do not discuss this aspect in this paper because (1) Mallory does not
present nor evaluate any custom policy, and (2) DistFuzz is a blackbox fuzzer.

To improve fuzzing throughput, DistFuzz uses check-
pointing and restore to skip the initialization process of the
SUT (§III-D). 2 Therefore, before the fuzzing campaign
starts, DistFuzz first brings up the SUT and waits for the
initialization process (i.e., gossip) to complete. Afterwards,
the checkpoint manager takes a checkpoint of each node of
the SUT. 3 When the actual fuzzing campaign starts, at the
beginning of each fuzzing iteration, the checkpoint manager
restores the state of each node from its checkpoint, and pauses
the SUT. 4 Next, the test case generator produces a sequence
of events, along with the timing interval between each event,
and sends each event to the event handler in the corresponding
node, based on where the event should occur. 5 DistFuzz then
starts the execution of the SUT and the event handler in each
node applies events one by one, applying an event only when
the time since the last one was applied exceeds the specified
timing interval (§III-B). 6 During execution, the runtime
monitor collects the network messages among nodes. DistFuzz
uses the collected network messages as fuzzing feedback to
guide the mutation of events and their timing intervals (§III-C).
7 The runtime monitor also collects other runtime information
and sends it to the checkers to detect bugs (§IV). 8 If a bug is
detected, DistFuzz generates a bug report that users can utilize
to confirm the bug. 9 Finally, users can use a deterministic
recorder and replayer provided by DistFuzz to effectively
reproduce and validate the bug DistFuzz detects (§IV).

B. Mutating Regular Events and Timing Interval

Input events are an effective form of testing inputs for
distributed systems (§II). Thus, distributed systems fuzzing
should focus on generating rare and interesting sequences of
input events. Unfortunately, we found that existing fuzzers are
prone to miss many bugs, due to the two factors below.

Finding #1. Effective distributed system fuzzing requires
frequent and guided mutations on regular events.

First, due to the focus on injecting fault events (§II-C),
existing fuzzers do not systematically mutate regular events,
thereby missing bugs caused by changes in regular events.

As a motivating example, Figure 3 shows a bug that
is founded by DistFuzz but is missed by existing fuzzers.
This bug corrupts the internal data structures of RethinkDB,
rendering a newly created database unusable. Triggering this
bug does not require even a single fault event, motivating the
need to generate interesting regular events to expose bugs.

Furthermore, we note that the search spaces for regular
events are huge, making it nearly impossible for user- or
randomly-generated testing workloads to effectively expose
certain bugs. As an example, RethinkDB supports tens of
user commands and even if we limit the commands to a
few common ones (e.g., creating/dropping tables, and read-
ing/writing entries), the problem still exists. This is because,
each command, other than its type, also involves several other
parameters (e.g., at which node to execute the command,
which table should be the target of the command). All these
parameters must be correct to trigger a deep bug.

Finding #2. Due to the timing-dependent nature of dis-
tributed systems, timing among events should be mutated.

4

Test case 133

+0ms SysInit (A, B, ...)
…

+100ms CreateDB (A, "db1")

+20ms CreateDB (B, "db1")

+50ms Get (B, "db1", k)
...

FILE: RethinkDB/src/.../real_reql_cluster_interface.cc
bool real_reql_cluster_interface_t::db_create(...) {

 /* Make sure there isn't an existing database
 * with the same name. */
 for (const auto &pair : metadata.databases.databases) {
 if (!pair.second.is_deleted() &&
 pair.second.get_ref().name.get_ref() == name) {
 *error_out = admin_err_t{
 strprintf("Database `%s` already exists.",
 name.c_str()), query_state_t::FAILED};
 return false;
 }
 }

}

Node A
Leader

Node B
Follower

Client

Start nodes

#db_create ("db1")

#db_create ("db1")

#db_check

CreateDB

CreateDB

Put
Failed uniqness check

#broadcast

Fig. 3: A bug in RethinkDB [47] that makes a newly created databases unusable. This bug is triggered by the following sequences
of regular events. First, the client sends CreateDB("db1") requests to Node A and B at almost the same time. Node A creates the
database with the name "db1" and sends Node B a message to announce the creation. However, before receiving the message,
Node B has already created the database with the name "db1". As a result, any request involving access "db1" will fail, since the
servers found that there are two databases with the same name "db1". So, the Put request to "db1" will fail and causes DistFuzz
detecting the bug. The fix is to synchronize the database creation among nodes with consensus protocols.

Test case 47

+0ms SysInit (A, B, C, ...)

…
+200ms NetFail (B)

+30ms Put (B, “key”, “value”)

+30ms NetFail (B)

...

Node A
Leader

Node B
Follower

Client

Start nodes

#followLeader

#processRequest

#writePacket

void followLeader() throws InterruptedException {
...
 try { ... }
 catch (Exception e) {
 closeSocket(); // set sock to null
 }
...}

void processRequest(Request r) {
... try { writePacket(...); }
 catch (Exception e) {
 learner.sock.close();
 }...}

Put

#recover
Access null pointer

Fig. 4: A bug that crashes a node in ZooKeeper [69]. This bug can only be triggered with specific relative timing among
events. After a leader election, when Node B calls the followLeader method, DistFuzz injects a network access fault (NetFail)
on Node B. This fault causes Node B to throw an exception, sets the sock variable to null, cleans up stale states, and then
initiates the recovery process. However, before the recovery starts, Node B receives a Put request and processes it by invoking
the processRequest method. During the execution of processRequest, DistFuzz injects another NetFail to cause writePacket to
fail. This failure makes Node B access sock, a null pointer, and crashes.

Second, all prior fuzzers do not consider the timing-
dependent nature of distributed systems (§II); they feed each
input event to SUT either immediately after the previous one or
with a fixed/random timing interval. Such an ad-hoc approach
is likely to miss many subtle bugs that require distributed
systems to execute timing-dependent logic.

To motivate the above statement, Figure 4 shows another
bug that DistFuzz found but others miss. This bug causes
ZooKeeper, a popular centralized co-ordination service for
distributed systems, to crash, and thus brings down the whole
distributed system. This bug can only be triggered with very
specific timing. Specifically, the Put request must be sent
to Node B before it starts the recovery process, and the
two network failures must be precisely injected during the
execution of followLeader and processRequest, respectively.

DistFuzz’s approach. Based on the above two findings,
DistFuzz must systematically (1) mutate both the regular events
and the fault events, and (2) mutate and enforce the relative
timing between events.

+50ms Client write Write value 123

+100ms Node kill Node id 0

+30ms Delay message Delay 50ms

50 0 123

100 1 0

30 5 5

Test-case file Event sequence

Fig. 5: Process of generating event sequence.

To co-mutate all three dimensions, DistFuzz equally en-
codes regular and fault events in input event sequences as
a 3-tuple <timing_interval, event_type, parameters>. The
event_type tuple denotes the type of the event. For example,
an event can be a Nodekill event that shuts down a computing
node in the system by force. The specific meaning of the
parameters tuple depends on the type of the events (e.g., for
SysInit, it has one parameter that specifies how many nodes
need to be initialized before testing). Finally, to enable timing

5

TABLE II: Events supported by DistFuzz.

Event Description Regular Fault
SysInit Initialize the whole system ✓

Get Send a "get" request to read a value
given a specified key ✓

Put Send a "put" request to write to the
specified key with the specified value ✓

Cas Send a "cas" request to compare and
swap the value of the specified key ✓

CreateDB Create a database, namespace or file ✓
DeleteDB Delete a database, namespace or file ✓
StatCheck Check the status of the system ✓

CustomREQ Send a request specified by the user to
the system under test ✓

NetDup Duplicate a message ✓
NetFail Fail a send/receive of a message ✓
NetDelay Delay a message ✓

NetPart Start a network partition by dropping
all messages to/from certain nodes ✓

NetHeal Stop the network partition ✓
FileFail Fail a read/write on a regular file ✓
FileDelay Delay a read/write on a regular file ✓
NodeStart Bring up a node ✓
NodeStop Stop a node gracefully ✓
NodeKill Kill a node by force ✓
NodeRestart Kill a node by force and restart it ✓
NodeChange Add/remove a node to/from the system ✓
Total 11 9

mutation, the timing_interval represents the time difference
(in milliseconds) between applying the previous event and the
current event.

As discussed in Section III-A, the maximum value and the
fuzzing granularity of timing_interval are user configurable pa-
rameters. These two values affect the effectiveness of fuzzing
and should be set according to the characteristics of SUT. First,
the maximum value cannot be too large. Otherwise, the SUT
will always complete the leader re-election or failure recovery
before DistFuzz applies the next event, thereby preventing
DistFuzz from exposing bugs during the re-election or recovery
process. Thus, we set maximum value to be 200ms, since
we set the election timeouts of the SUT to 150ms and the
network latency in our experimental environment is around
50ms. Second, the fuzzing granularity cannot be too short. A
short granularity not only makes DistFuzz prone to explore
redundant states but also makes DistFuzz inject many faults in
a short time, thereby often overwhelming the fault tolerance
mechanisms in SUT, causing the whole system to fail, and
thus, prevents DistFuzz from exposing bugs. As a result, we
set the default value to be 10ms. We further evaluate the impact
of these values in §V-E.

Table II shows all the events DistFuzz support, which are
generic enough for a wide range of distributed systems; all the
systems we evaluate (§V-A) support these events.

To enforce relative timing, DistFuzz only applies an event
when the time since it applies the previous one is larger
than the timing_interval. DistFuzz applies these events trans-
parently, by either intercepting system calls (e.g., send and
receive) or invoking the interfaces exposed by the system under
test (e.g., Put for writing values into the SUT). For example,
DistFuzz injects a network partitioning fault (NetPart) by
dropping all messages to/from certain nodes. We discuss how
DistFuzz applies other events in §IV-B. A non-trivial portion

TABLE III: Mutation options of an event sequence.

Mutation type Description
Deletion Delete this event.
Addition Add a new event.
Replacement Replace this event with a new event.
Parameter change Change the parameters of this event.
Interval change Change the timing interval between events.

of distributed systems bugs are caused by timeouts. DistFuzz
triggers timeouts indirectly by injecting fault events (e.g., by
injecting NetPart).

For mutation, DistFuzz follows the popular fuzzers [2],
[19], [22], [45], [70] to use a test-case file to generate the
input event sequence. Figure 5 shows how a test-case file is
translated to DistFuzz’s input sequences. Mutation on the test-
case file leads to the mutation of event sequences. Table III
shows the corresponding mutation options.

The input space of DistFuzz is larger than prior fuzzers,
due to the additional mutation on regular events and timing
intervals. This is not an issue for DistFuzz, since as we discuss
in the next subsection, the effective feedback it uses prunes the
non-important mutations.

C. Network Messages with Symmetry-Based Pruning

Another conceptual contribution DistFuzz makes is a novel
fuzzing feedback approach for distributed systems. Unlike
prior approaches, DistFuzz’s feedback is highly effective,
while does not require source code access nor user inputs,
thereby aligning with DistFuzz’s blackbox approach (§II-B).

As discussed in Subsection II-C, Mallory is the state-of-
art approach to generate fuzzing feedback. However, Mallory
suffers from two limitations: (i) requiring users to annotate
interesting code blocks, which is laborious and error-prone;
and (ii) the similarity-based pruning is ad-hoc and ill-suited
for distributed systems, resulting in both missing possible in-
teresting states and exploring redundant states, as we elaborate
next in our findings.

Finding #1. Information solely in network messages is
sufficient as an effective fuzzing feedback.

Our first finding is that user annotation on interesting code
blocks, as required by Mallory, may not effectively improve
fuzzing performance in distributed systems. Specifically, the
observation that network messages capture important state
changes (§II) can also be generalized to interesting events in
the code. In other words, we found that network messages also
cover most of the interesting code blocks, since these code
blocks either 1) are invoked due to receiving certain network
messages, or, 2) will, in turn, send out network messages.

As a motivating example, Mallory reports a bug (detailed
in [36] and shown in Figure 1 in [37]), that is triggered, in part,
by the snapshot operation. Mallory believes that the bug can
only be efficiently detected if the user annotates the snapshot
operation. However, we found that the snapshot operation will
result in sending a network message, which informs other
nodes that this node has taken a snapshot. Thus, DistFuzz can
also find this bug by just using network messages as feedback.
In fact, we survey all the annotations made by Mallory’s

6

N2

N1

3

1

2

AppendEntries

RequestVote

VoteGranted

entry

4 5

N3

N2

N1

3

2

1

4 5

N3

entry

Fig. 6: Different states output similar network messages.

N1
N2

N3

(a) N1 starts election

N2

N1

N3

(c) N2 starts election

0

1

0

1

N1
N2

N3

(b) N1 starts election

1

0

N3
N1

N2

(d) N3 starts election

1

0

Symmetry

Fig. 7: Symmetry of the states in a distributed system

authors for their fuzzing campaigns, and confirms that 91%
of them are covered by network messages.

Finding #2. Similarity-based feedback pruning misses in-
teresting states in distributed systems.

Our second finding is that pruning similar network message
sequences, as in Mallory, is prone to miss interesting states,
since, for a distributed system, significantly different states
may output similar network message sequences.

Figure 6 shows a motivating example with Raft. The
current leader N1 sends an AppendEntries message to follower
N2. Concurrently, due to a network partition, N3 starts the elec-
tion and sends a RequestVote message to N2. Subsequently, N3
sends multiple messages to N2. If N2 receives AppendEntries
before RequestVote (as shown in the left part of the figure),
N2 will append the entry. Otherwise, it won’t (as shown in
the right part of the figure). Since the only difference in these
two long sequences of network messages is the order between
the first two messages, Mallory considers the two sequences
similar, and thus may only explore one of these different states.

Finding #3. Similarity-based feedback pruning explores
redundant states due to symmetry.

Our third finding is that Mallory’s similarity-based pruning
might lead to exploring redundant states. Figure 7 illustrates a
motivating example using the election process of the consensus
algorithm. To start an election, node N1 sends a message
to nodes N2 and N3. In this example, the overall system
state in all four parts of the figure is essentially the same as
(or symmetric to) each other. However, in modulo symmetry,
the sequences of network messages are quite different. As an
example, in the (a) and (c) parts of the figure, all corresponding
messages have different senders and receivers. Furthermore,
two out of three nodes (i.e., N1 and N2) have different numbers
of sending and receiving messages. Thus, the similarity-based
pruning approach in Mallory will consider these symmetric
states differently.

DistFuzz’s approach. For illustration purposes, we first
present the initial design of DistFuzz’s feedback, followed by
our optimizations for effectiveness.

Based on Observation #1, DistFuzz only uses sequences
of network messages (or message sequences) as the feedback.
Specifically, DistFuzz encodes message sequences as a 5-tuple,
where each item represents a network message, consisting of
1) a global sequence number recording the order of the events;
2) the type of the event (i.e., send or receive); 3) the sender 4)
and the receiver ID of the message; and 5) the message content.
Note that to capture the state difference caused by unreliable
networking (e.g., delays, message reordering), DistFuzz uses
two message events (a send event and a receive event) to
describe a message. The tables in Figure 8 show how DistFuzz
encodes the message sequence for Figure 7.

Based on Observations #2 and #3, DistFuzz proposes a sys-
tematic symmetry-based pruning technique. DistFuzz departs
from the ad-hoc approach that prunes network messages based
on their similarities, and thus will not miss interesting states
(e.g., the one in Figure 6).

Motivated by the example in Figure 7, the insight behind
our pruning technique is that the symmetry in the system
state is reflected by the symmetry in the network messages.
Furthermore, we leverage two kinds of symmetry in network
messages: (1) order symmetry, where, as shown in parts (a) and
(b), the difference in the order in which N2 or N3 receives the
message does not lead to new states. and (2) role symmetry,
where, as shown in parts (a), (c), (d), whether node N1, N2,
or N3, starts the election does not lead to new states.

To prune order symmetry, as shown in the middle part of
Figure 8, DistFuzz replaces the global sequence number with
a local sequence number plus node ID. Thus, for two different
nodes, the order they send or receive messages does not result
in different encodings. Lastly, to prune role symmetry, as
shown in the right part of the figure, DistFuzz removes all
the node IDs in its encoding. As a result, the encoding stays
the same regardless of which node starts the election.

A potential drawback of discarding similarity-based prun-
ing is that the feedback is sensitive to an unimportant state in
the network message content (e.g., timestamps). We find that,
essentially, the key information in the message content is the
type of the message (e.g., if a message is an "elect" or "vote"
message). Thus, to avoid being too sensitive, DistFuzz should
only encode the message type in the feedback.

To achieve this, a possible approach is to ask the user
to provide a function that classifies a message based on
its content, but this is laborious and error-prone. DistFuzz
works around this problem by using the length of messages
to approximate the message type (as shown in the right part
of Figure 8). The intuition behind this is that different types
of messages often have different lengths, especially when the
length of various names in the system is fixed. Specifically,
DistFuzz sets the name of databases, file, and the keys to a
fixed length (1 and 3 in our evaluated systems) and does not
fuzz these names.

To evaluate the accuracy of the approximation, we analyzed
all the evaluated systems (§V-B) and found that, for each
system, on average, 81% of message types (ranging from

7

RID

2

3

2

3

1

1

1

1

SID

1

1

1

1

2

3

2

3

Type

Send

Send

Recv

Recv

Recv

Recv

Send

Send

LengthLocal Type

100 Send

101 Send

100 Recv

100 Recv

42 Recv

43 Recv

41 Send

41 Send

ContentGlobal

Elect0

Elect1

Elect2

Elect3

Vote6

Vote7

Vote4

Vote5

N1
N2

N3

N1 starts election

N1
N2

N3

N2 and N3 vote

Optimize:
Remove ID,
Content to

Length

0

1

4

5

Optimize:
Global to

Local

ContentLocal Type

Elect0 Send

Elect1 Send

Elect0 Recv

Elect0 Recv

Vote2 Recv

Vote3 Recv

Vote1 Send

Vote1 Send

NID

1

1

2

3

1

1

2

3

RID

2

3

2

3

1

1

1

1

SID

1

1

1

1

2

3

2

3

Fig. 8: Examples of DistFuzz’s basic feedback encoding and various optimizations.

63% to 100%) are of different lengths, and messages with
different lengths are of different types. In addition, for the
message types of the same length, we found that most are
used to confirm that a node (Node A) receives a request from
another node (Node B). However, the request messages from
Node B are of different lengths, and thus, the accuracy of our
approximation is not compromised. In summary, our analysis
shows that the approximation is accurate enough. Section V-D
further evaluates the effectiveness of the feedback mechanism.

D. Minimizing Testing Overhead

A fuzzer must minimize the runtime testing overhead it
incurs since this can significantly improve fuzzing effective-
ness, as reported by prior work [49], [51]. Unfortunately, prior
distributed system fuzzers suffer from high runtime testing
overhead. For example, CrashFuzz reports that their techniques
on average increase the execution time of a test case by 307%.

Fuzzing acceleration with checkpointing. To speed up
fuzzing, DistFuzz employs checkpointing and restore tech-
niques to minimize the initialization time. Specifically, before
the fuzzing starts, DistFuzz brings up the SUT and takes a
checkpoint of it by checkpointing the states of each node.
Subsequently, during fuzzing, in each iteration of the fuzzing
loop, DistFuzz restores from the checkpoint the state of the
SUT. The checkpoint of DistFuzz consists of two kinds of
state: (1) the state of processes in each node, including their
registers and memory states, as well as in-kernel state (e.g.,
file descriptors, sockets); (2) the file system state of the
node, such as configuration files and files that store data
of a distributed database. To further minimize the overhead,
DistFuzz stores the checkpoint in memory. This approach
incurs modest overhead (at a maximum of 700MB of memory
space in our evaluation).

The initialization process of a distributed system may have
bugs, and thus should be fuzzed. Hence, DistFuzz allows
a user to provide the probability for DistFuzz to bring up
the system under test directly without using the checkpoint,
thereby fuzzing the initialization process.

Moving operations outside of the testing. The other mech-
anisms DistFuzz uses to minimize the testing overhead are
based on the general idea of moving as many operations as
possible from the performance-critical testing stage, which is
already reflected in Figure 2. Specifically, DistFuzz 1) decides
the input events before the actual testing (4 in the figure) and
2) invokes the checker for bug detection after the testing (7).
Therefore, during testing, (5 in Figure 2), DistFuzz only needs

to apply input events and logs the relevant information for
feedback and bug detection. Note that the reported evaluation
time in §V (i.e., 48 hours) includes the time of the two
operations DistFuzz moves out of the actual testing.

E. Discussion

This subsection discusses a few more characteristics of
DistFuzz. First, DistFuzz scales to large distributed systems
with many nodes. This is because generating input sequences
is fast as it is simply mutating and distributing a small seed
file, and the event handler and runtime monitor is per-node,
thereby avoiding a central bottleneck. Second, unlike prior
distributed system fuzzers, DistFuzz does not need to directly
deal with asynchronous behaviors and race conditions since it
does not control the execution or scheduling of each node; it
applies events by intercepting system calls (§IV-B) and uses
the record/replay technique (RR) to reproduce bugs offline
(§IV-C). Finally, DistFuzz does not suffer from false positives,
thanks to its use of RR to deterministically reproduce the found
bugs (§IV-C).

IV. IMPLEMENTATION

We implemented DistFuzz in C++ with a total of about
7300 lines of code. DistFuzz leverages strace [57] to intercept
system calls, CRIU [9] for checkpointing and restoring, and
RR [42] for deterministic record and replay.

To simplify deployment for other users, for all the systems
that we have already deployed DistFuzz on, we provide a
docker image. The users can thus easily bootstrap their testing
process. DistFuzz also provides a template generator that
automatically generates the docker image on the system it
deploys, to ease testing in practice.

A. Checkers

DistFuzz uses five types of checkers at present:

Memory bug checkers for low-level languages. A memory
bug is caused by programming mistakes involving pointer
operations and/or dynamic memory management which lead
to out-of-bounds memory access and dangling pointer deref-
erence. Only distributed systems written in legacy languages
like C/C++, require memory bug checkers; DistFuzz uses
ASan [53] in our evaluation due to its high performance. We
note that this does not break DistFuzz’s design goal of being
black-box. Memory checker is not a part of DistFuzz’s design
and DistFuzz can use Valgrind [60] for this purpose as well.

8

Linearizability violation checker for distributed DB. Dis-
tributed databases support linearizability as one option for a
consistency model. To detect bugs that violate linearizability
guarantees in distributed databases, DistFuzz uses an existing
linearizability checker Knossos [26]. Knossos checks whether
this sequence of requests and responses is possible under
the linearizability consistency model. DistFuzz generates the
sequence automatically based on the functions the user imple-
ments or Get, Put and Cas (§III-B).

Node crash checker. The node crash checker, by its name,
detects whether a node has crashed. DistFuzz implements a
simple one by checking whether the corresponding process of
the distributed system still exists. DistFuzz runs the node crash
checker after each event in the sequence.

Whole system availability checker. The availability checker
validates whether the distributed system is still functional and
can respond to client requests. DistFuzz invokes the checker at
the end of the testing process, where all the events in an event
sequence have been applied. The availability checker works
by sending a status check command (§III-A) and checks if it
returns the expected value within a timeout (2 seconds).

Log checker. Distributed systems often log runtime errors in
specific files [66], [67]. To detect such errors, we implement
a simple log checker that searches for keywords like “FATAL
ERROR” and “BUG” in log files.

B. Events

As discussed in §III-A, DistFuzz uses events to interact
with the distributed system. DistFuzz implements an event
registry to help users add new events. DistFuzz automatically
generates event sequences by mutating events in the registry.

Regular events. Regular events, as described in §III-A,
need user inputs. DistFuzz allows users to define regular
events by implementing C++ classes or shell scripts. SysInit is
usually a shell script that initializes required environments and
services like making directories, setting environments variables
and starting services. Users need to write them according to
target system’s official documents. Get, Put, Cas, CreateDB,
DeleteDB, StatCheck events are similar. They are just simply
calling the corresponding APIs or client binaries with the given
parameters. DistFuzz also provides a template to help users
implement them. NodeStart, NodeStop and NodeChange need
user to specify how to start, stop and change a node given the
index of the node.

Fault events. NetDup, NetFail, NetDelay, FileFail and FileDe-
lay are implemented by modifying strace to intercept the
system calls. NetDup is calling the same system call with
same parameters twice. NetPart and NetFail are forcing the
system call to return error codes. NetDelay is waiting a while
before the network system call. FileFail and FileDelay are
implemented similarly for file system calls. NetHeal stops
NetPart. NodeKill is implemented by killing the corresponding
process. NodeRestart is implemented by killing the process and
starting a new one.

C. Bug Reproduction

Prior work on distributed system fuzzing (i.e., Jepsen [21],
CrashFuzz [15] and Mallory [37]) do not provide mecha-

TABLE IV: Information about the tested distributed systems.

System Description Lang Version
Braft [5] Raft implementation by Baidu C++ commit 0c5a59
NuRaft [41] Raft implementation by eBay C++ commit 5a7a40
Dqlite [12] Embeddable distributed DBMS C commit 37af7c
Redis [46] Distributed key-value Store C commit e18c38
RethinkDB [47] Distributed NoSQL DBMS C++ v2.4.1
AerospikeDB [1] Distributed NoSQL DBMS C v5.6.0.4
ClickHouse [7] Distributed DBMS C++ v21.9.2.17
etcd [13] Distributed key-value store Go v2.2.0
ZooKeeper [20] Distributed coordination system Java v3.5.1
HDFS [54] Distributed file system Java v3.2.4

nisms for users to reproduce the reported bugs. As a result,
several bugs reported by prior work turned out to be false
positives [34], [35], caused by bugs in the fuzzer. DistFuzz
enables low-overhead reliable bug reproduction through an
existing record and replay tool: RR [42]. To minimize testing
overhead, DistFuzz reproduces bugs offline (i.e., only after
fuzzing campaigns finish). To reproduce a bug, DistFuzz
repetitively feeds the SUT with the same bug-triggering input
events and timing intervals. If one execution triggers the bug,
all the non-deterministic events are recorded by RR, thereby
bugs can be reproduced reliably. We have reliably reproduced
all the bugs founded by DistFuzz.

V. EVALUATION

A. Experimental Setup

As shown in Table IV, we evaluate DistFuzz with 10
open-source and popular distributed systems, written in three
languages: C/C++, Go and Java. Two of them are two industrial
Raft implementations (Braft, NuRaft) and the other eight
are production-level distributed systems. We chose the same
evaluated systems as prior work (i.e., Mallory and CrashFuzz)
to enable a direction comparison. The design of DistFuzz is
based on the common characteristics of distributed systems
(§II-A) and we believe DistFuzz applies to other distributed
systems (such as machine learning systems and network pro-
tocol/systems) as well.

Our evaluation machines are equipped with 18-core Intel
i9-10980XE processors and 60GB memory. We disable hyper-
threading and turboboost in BIOS and use cpupower to set the
CPU frequency to the base one (i.e., 3.00GHz). We follow the
official documents of the evaluated systems for initialization
and configure the length of the event sequence to 10. We only
enable memory checkers for C/C++ systems and enable other
checkers for all systems. Following [21], [37], [43], we test
each distributed system on five nodes. Following [25], we
repeat each fuzzing experiments for five times with a time
limit of 48 hours for each fuzzing.

B. Runtime Testing

Table V shows the fuzzing experiment results about
message sequences and bug detection for the ten tested dis-
tributed systems.

Testing coverage. DistFuzz exploits message sequences as
fuzzing feedback to guide the fuzzing process. To understand
the feedback improvement of DistFuzz, we also run each

9

TABLE V: Results of fuzzing distributed systems.

System Message Sequences Bug detection
Fuzzing Non-fuzzing Found Confirmed

Braft 12.1K 1.1K (rand data) 10 5
NuRaft 11.5K 1.5K (rand data) 2 1
Dqlite 5.3K 1.7K (test suite) 9 5
Redis 13.1K 2.1K (test suite) 4 2
RethinkDB 11.3K 4.5K (test suite) 9 4
AerospikeDB 98.5K 55.3K (rand data) 3 3
ClickHouse 3.6K 1.5K (test suite) 2 1
etcd 14.4K 2.2K (test suite) 2 1
ZooKeeper 17.6K 7.2K (test suite) 8 5
HDFS 1.5K 1.3K (rand data) 3 1
Total 188.9K 78.4K 52 28

TABLE VI: Bugs found by checkers.

System Checkers
ASan Linear Crash Avail Log

Braft 2 0 2 3 3
NuRaft 0 0 1 1 0
Dqlite 4 0 5 0 0
Redis 1 0 3 0 0
RethinkDB 4 0 2 1 2
AerospikeDB 1 1 1 0 0
ClickHouse 0 0 2 0 0
etcd - 0 1 1 0
ZooKeeper - 0 5 3 0
HDFS - 0 2 0 1
Total 12 1 24 9 6

distributed system for 48 hours by executing its official test
suites; if it has no test suite, we generate random client requests
for 48 hours without feedback. Compared to non-fuzzing
testing, DistFuzz in total finds 2.11x more message sequences
in the SUTs, due to the novel techniques used by DistFuzz.

Bug detection. DistFuzz in total finds 52 real bugs in the
10 distributed systems. We have reported these bugs to the
related developers, and 28 of them have been confirmed.
We are still waiting for responses for the remaining bugs.
According to the developers’ feedback, 20 of the 28 confirmed
bugs are previously unknown. Among the 28 confirmed bugs,
13 have been fixed by related developers, and 4 new CVEs
have been assigned. The remaining 15 bugs are not fixed,
as the developers have not found proper ways to fix them
correctly in a short time, indicating the difficulty of bug fixing
in distributed systems.

Bug-finding process. We analyze how DistFuzz finds these
52 bugs, and show the results in Table VI. 12 memory bugs are
found by ASan, and 40 semantic bugs are found by our non-
memory checkers. Specifically, only 1 linearizability violation
is found by our linearizability checker, indicating distributed
systems pay significant attention to data consistency; 24 node-
crash bugs are found by our crash checker, and these bugs
can cause partial failures in distributed systems; 9 availability
bugs and 6 error-log bugs are found by our availability checker
and log checker, respectively. These 52 bugs are found, as
DistFuzz can cover many infrequent message sequences using
our techniques. To clearly understand this reason, we run each
distributed system for 48 hours by running its test suites or
providing random client requests without fuzzing, and the five
kinds of checkers do not find any bugs during testing.

TABLE VII: Bugs characteristics.

System Events Minimal events
Regular Fault 1 2 3 >3

Braft 7 9 1 6 2 1
NuRaft 2 1 0 2 0 0
Dqlite 9 9 0 2 4 3
Redis 4 3 0 2 2 0
RethinkDB 8 8 1 7 1 0
AerospikeDB 1 3 0 3 0 0
ClickHouse 1 1 0 1 1 0
etcd 2 2 0 1 0 1
ZooKeeper 5 8 0 0 3 5
HDFS 3 3 0 0 1 2
% 81% 88% 4% 46% 27% 23%
Total 42 47 2 24 14 12

Root causes of the found bugs. We check the reports and
source code of the 44 found bugs to analyze their root causes:

Memory bugs. Among the 12 memory bugs found by ASan,
3 are memory leaks, 6 are buffer-overflow issues (one example
shown in Figure 9(a)), 1 is a null-pointer dereferences, 1 is a
use-after-free, and 1 is a bad-free issue.

Linearizability violation. This violation is caused by a stale
read [8] in AerospikeDB. The developers admitted that this
violation is real in the community version that we tested, and
it can be eliminated in the enterprise version.

Node-crash bugs. Among the 24 node-crash bugs, 13 are
caused by assertion failures. As for these failed assertions, the
developers mistakenly assume the related failures never hap-
pen. However, the assumptions about the 13 bugs are wrong.
10 node-crash bugs are caused by unhandled exceptions, which
are neglected by the developers. 1 node-crash bug is caused by
the wrong calculation of the snapshot index when a snapshot
is loaded at the initialization phase in Dqlite (as shown in
Figure 9(b)).

Availability bugs. Among the 9 availability bugs, 6 are
caused by incorrect or missing recovery processes of node ex-
ceptions. For example, an availability bug found in ZooKeeper
is incorrect handling of network failures (as shown in Fig-
ure 9(c)). 3 are caused by incorrect handling of special client
requests, causing the distributed system to malfunction after a
test of providing these client requests.

Error-log bugs. The 6 error-log bugs are caused by missing
exception handling. Indeed, the developers know that related
exceptions can occur but do not know how to handle them
correctly, so only error logs are printed when these exceptions
occur. Although these error-log bugs do not cause obvious
problems in our tests, we believe that they may cause practical
issues when the distributed system runs for a longer time.

Event types of bugs . To understand the event types responsi-
ble for bugs, we analyzed events needed for triggering each bug
as shown in the columns “Regular” and “Fault” in Table VII.
SysInit is removed during analysis as it is needed for all bugs.
Many bugs need multiple events, so the total number is larger
than the number of found bugs. The result shows that most of
the bugs are triggered by both regular and fault events. In the
table, 81% of the bugs need regular events, and 88% need fault
events. The result indicates that both regular and fault events
are important for triggering bugs in distributed systems.

10

Minimal event sequence for triggering bugs We manually
analyzed the event sequences of triggering the bugs, referring
to [52]. The results are shown in the column “Minimal events”
in Table VII. 34 of the 42 bugs can be triggered by two or three
events, and most of these need to be triggered by both regular
and fault events. This finding coheres with bug studies [65]
that find most of the reported distributed-system bugs can be
triggered by two or three events.

Security impact of the found bugs Certain memory bugs
DistFuzz finds may cause data leakage and code execution
that can be exploited by attackers. Linearizability violations
can lead to data inconsistency and data loss. Node-crash bugs
cause partial failures which, although tolerable by distributed
systems, degrade overall system performance. Finally, avail-
ability bugs, once being exploited, renders the system unable
to respond to client requests for certain amount of time (2
seconds). Therefore, both node-crash bugs and availability
bugs are vulnerable to DoS attacks.

The found bugs currently get assigned 4 CVEs (CVE-2023-
50575 and CVE-2023-50576 for Braft, CVE-2023-50577 for
AerospikeDB and CVE-2024-22937 for RethinkDB) that may
have catastrophic security impacts. These 4 CVEs are caused
by memory bugs, and they can be triggered easily by attackers.
These CVEs are applied and assigned via MITRE [39] and
have been reported to the developers.

In the following, we provide three case studies to illustrate
bugs that were exposed by DistFuzz. Figure 9 shows these
bugs, and they have been confirmed by related developers.
The figure also shows the event sequences for the bugs.

Case study: Memory bug in Redis. In Figure 9(a), when
the function parseMovedReply parses a client request that
contains an empty space, the pointer variable p points to the
location of this space, but the function passes the pointer
p+1 with the length of p to the function NodeAddrParse,
which causes a buffer-overflow issue. To fix this bug, we have
submitted a patch to move the pointer past the space, which
matches the pointer and its length.

Case study: Node-crash bug in Dqlite. In Figure 9(b), during
the start process of a node, it attempts to load an existing
snapshot and also restores the variable start_index in
the function uvLoadSnapshotAndEntries. When it is
started for the first time and there is no snapshot, the node start
is still successful. However, after a client request is provided
and a snapshot is created, if the node is stopped forcibly, it
cannot be restarted. Indeed, at that time, the start_index is
mistakenly assigned to 1, which makes the following variable
last_index less than (*snapshot)->index, causing
the snapshot loading to fail. To fix this bug, the developers
have submitted a patch to correctly calculate start_index.

Case study: Availability bug in Zookeeper. As shown in
Figure 9(c), when two NetFails happened on a node, the
zkServer variable is set to a non-running state in the func-
tion receiveMessage, that will cause the zk.isRunning
to return false. In such a case, the node cannot process the
client request Stats check that should be processed successfully
to report the node status. To fix this bug, the developers have
submitted a patch to add a specific check for the non-running
state of zkServer variable before processing Stats check.

C. Comparison to Existing Frameworks

We experimentally compare DistFuzz to four state-of-the-
art distributed-system testing frameworks Jepsen [21], Mal-
lory [37], CrashFuzz [15] and Namazu [40].

We evaluate each framework on all the target systems
it can support. We ran DistFuzz and Jepsen on all target
systems. Mallory only supports C/C++ and Rust program, so
we evaluate it with Braft, NuRaft, Dqlite, Redis, RethinkDB,
AerospikeDB ClickHouse. The annotations of Braft, Dqlite,
and Redis are from the authors of Mallory; we annotate other
target systems with our best efforts following the style of the
Mallory author. CrashFuzz only supports Java program and we
evaluate it on ZooKeeper and HDFS. While Namazu supports
Go and Java program, it has not been kept up-to-date; its last
commit is six years ago, and as a result, despite our best efforts,
we can only evaluate it on etcd and Zookeeper. We repeat each
fuzzing experiment for five times.

Message sequences. Figure 10 plots communication se-
quences covered by DistFuzz and the 4 frameworks. In the
figure, DistFuzz covers more message sequences than all other
frameworks. Jepsen and Namazu only generate inputs ran-
domly. Mallory generates random regular events and injects
fault events based on its feedback. In contrast, DistFuzz
generates test cases from multiple dimensions with more
effective program feedback of message sequence, so DistFuzz
can generate more effective test cases to improve message
sequence coverage.

Found bugs. Figure 11 shows the numbers of bugs found by
DistFuzz and the four frameworks. Jepsen, Mallory, CrashFuzz
and Namazu find 12, 16, 2 and 2 bugs, respectively. Specifi-
cally, Jepsen and Mallory, Jepsen and Namazu find common
bugs. Thus, these testing frameworks in total found 19 unique
bugs. Among these 19 bugs, there are two Dqlite bugs found by
Mallory that are missed by our framework. However, after our
investigation, we found that these two bugs are false positives,
as they are caused by the bugs in the testing framework
itself [34], [35]. All remaining bugs are found by DistFuzz,
and it also finds 35 bugs missed by the four frameworks, due
to covering more message sequences.

D. The Effectiveness of Two Conceptual Contributions

To understand the benefits of the two conceptual contri-
butions, we run DistFuzz without 1) mutating regular events
and timing interval (DistFuzz-T), and 2) pruning message
sequences (DistFuzz-S), to understand the benefits of these
techniques. We also run DistFuzz without both techniques
(DistFuzz-WF) as a baseline.

We ran a 48-hour experiment, and repeat each experiment
for five times. We analyzed the time of finding bugs in the
2 distributed systems as listed in Table VIII. We find that
the overall bug-finding time is increased for DistFuzz-T and
DistFuzz-S by 338.39 and 249.67 hours, and the average bug-
finding time is increased by 18.25 and 13.87 hours, respec-
tively. 2 and 3 bugs are missed by DistFuzz-T and DistFuzz-S,
indicating the importance of these techniques in bug detection.

Compared to the baseline, we found that by using our two
conceptual contributions, the bug-finding time is reduced by

11

FILE: Redis/src/common.c

 bool parseMovedReply(...) {

 /* -MOVED 0 1.1.1.1:1 or -MOVED 1.1.1.1:1 */
 if (strlen(str) < 15 || strncmp(str, ...) != 0)
 return false;

 /* Handle current or cluster-style
 * -MOVED replies. */
 const char *p = strrchr(str, ' ');
- return NodeAddrParse(p + 1, strlen(p), addr);
+ /* Move the pointer past the space. */
+ p++;
+ return NodeAddrParse(p, strlen(p), addr);
 }

(a) Memory bug in Redis

NodeStart Put
Buffer

overflow!

FILE: C-Raft/src/uv.c

 static int uvLoadSnapshotAndEntries(...) {

 if (segments[0].is_open) {
- *start_index = 1;
+ *start_index = (*snapshot)->index + 1;
 }

 last_index = *start_index + *n - 1;
 if (*snapshot != NULL && last_index < (*snapshot)->index) {
 rv = RAFT_CORRUPT;
 goto err;
 }

 }

NodeStart Put NodeKill
Node

restart fail!

(b) Node-crash bug in Dqlite

FILE: Zookeeper/src/.../NettyServerCnxn.java
 private void receiveMessage(...) {

 Zookeeper zks = this.zkServer;

- if (zks == null || !zk.isRunning()) {
- throw new IOException("ZK down");
- }

+ if (zks == null) {
+ throw new IOException("ZK down");
+ } else if (!zks.isRunning()) {
+ LOG.debug("Zks not running but keep processing");
+ }

 }

Node
Start

NetFail on
Node 0

NetFail on
Node 0

No
response!

(c) Availability bug in Zookeeper

Stats
check

Fig. 9: Example bugs found by DistFuzz in Redis, Dqlite and Zookeeper.

12 24 36 48

5K

10K

0
0 0.2K

0.2K

0.5K

Braft

12 24 36 48

5K

10K

0
0

0.1K

0.6K

0.5K

NuRaft

12 24 36 48

2K
4K
6K

0
0

0.4K
1.4K

0.4K

Dqlite

12 24 36 48

5K

10K

0
0

0.01K
0.9K

0.03K

Redis

12 24 36 48

50K

100K

0
0

1.9K

0.9K

2.2K

RethinkDB

12 24 36 48

30K
60K
90K

0
0

14K

9.3K

5.6K

AerospikeDB

12 24 36 48

1K
2K
3K
4K

0
0

0.1K
0.2K

0.6K

ClickHouse

12 24 36 48

4K
8K

12K

0
0

0.1K

0.7K

0.4K

etcd

12 24 36 48

5K
10K
15K

0
0

0.01K

0.1K
2.2K

1.2K

ZooKeeper

12 24 36 48

0.5K

1K

1.5K

0
0

0.1K

0.1K

0.1K

HDFS

DistFuzz Jepsen Mallory CrashFuzz Namazu

Fig. 10: Comparison of the covered message sequences. The line represents the median value, while the shaded area shows the
minimum and maximum ranges observed across five experiments. The number at the end of each line is the margin of error at
the 95% confidence level.

0

5

10
10

2
3

Braft

2
1 1

NuRaft

9

2
4

Dqlite

4
2 2

Redis

9

3
4

RethinkDB

0

5

10

3
1 1

AerospikeDB

2
1

ClickHouse

2
1 1

etcd

8

1 1

ZooKeeepr

3
1

HDFS

DistFuzz Jepsen Mallory CrashFuzz Namazu

Fig. 11: Comparison of the found bugs.

299.64 hours in total and 16.6 hours on average than running
without them (DistFuzz-WF). 5 bugs are missed by DistFuzz-
WF, indicating the importance of these techniques in bug
detection. The min time for bug Zookeeper-3 is a bit longer
with DistFuzz as it is a concurrent bug that has much non-
determinism to trigger during early testing.

0/0 100/10 200/10 200/30 200/50 300/10 500/10
0

200

400

600

T
hr

ou
gh

pu
t

(t
es

ts
/h

)

0/0 100/10 200/10 200/30 200/50 300/10 500/10
0

5

10

15

Found
bugs

Fig. 12: Fuzzing throughput (line) and the number of founded
bugs (bar) in Braft with different maximum timing intervals
and granularity. The shaded area shows the minimum and
maximum ranges across five experiments.

E. Impact of Timing Intervals

Figure 12 shows the impact of different timing values with
Braft. We find that the throughput only decreases from 502 to
486 (tests per hour) when the maximum timing interval is less
than 200ms, but decrease from 486 to 386 when the timing
interval is larger. The granularity does not affect the throughput
significantly, but it affects the found bugs. We find that 200/10
is the best choice, as it can find more bugs than others.

12

TABLE VIII: The median bug finding time in hours for Braft
and Zookeeper. TO means the bug is not detected in 48 hours.
The minimum, maximum and margin of error of bug-finding
time across five runs are shown in parentheses. Total is the
total of average bug-finding time for all bugs.

Bug DistFuzz DistFuzz-T DistFuzz-S DistFuzz-WF
B-1 0.16(.16,.16,0) 0.16(.15,.18,.02) 0.18(.17,.18,.01) 0.16(.16,.16,0)
B-2 8(5.8,13,4.5) 28(27,TO,13) TO(TO,TO,0) TO(TO,TO,0)
B-3 1.1(.5,1.5,.6) TO(23,TO,16) 9(4.5,12,4.7) TO(TO,TO,0)
B-4 1.7(1.7,2,.21) 29(12,TO,21) 32(16,TO,18) 32(4.3,TO,25)
B-5 2.1(2,4.1,1.4) TO(TO,TO,0) TO(TO,TO,0) TO(TO,TO,0)
B-6 3.3(2.5,4.1,.95) 4.3(3.1,4.6,.94) 22(17,26,4.7) 25(3.3,27,15)
B-7 1(.8,1.3,.3) 1.4(.8,2.1,.77) 23(16,TO,19) 3.6(2,5.5,2.1)
B-8 2.7(2.1,29,18) TO(TO,TO,0) TO(TO,TO,0) TO(TO,TO,0)
B-9 0.06(.06,.06,0) 0.06(.06,.08,.01) 0.11(.1,.14,.02) 3.1(.4,4.1,2.2)
B-10 0.02(.02,.02,0) 0.02(.02,.03,.01) 0.02(.02,.02,0) 0.02(.02,.05,.02)
ZK-1 0.52(.42,.83,.25) 2.6(2.1,3.5,.83) 1.1(.9,2.3,.9) 0.7(.53,1.1,.35)
ZK-2 0.53(.44,.6,.1) 0.9(.86,1.4,.38) 1.3(.9,6.1,3.4) 11(2.7,28,15)
ZK-3 8.8(7.4,8.9,.98) 8.8(8.3,1.1,1.2) 9.3(4.5,31,17) 25(6.7,26,13)
ZK-4 0.5(.43,1.2,.5) TO(42,TO,3.9) 13.1(3.5,14,6.9) TO(TO,TO,0)
ZK-5 0.02(.02,.02,0) 0.02(.02,.02,0) 0.07(.03,.1,.04) 0.02(.02,.02,0)
ZK-6 0.02(.02,.03,.01) 0.02(.02,.02,0) 0.03(.03,.03,0) 0.09(.02,.13,.07)
ZK-7 0.22(.22,.47,.17) TO(37,TO,7.5) 22(1.2,41,24) 4.1(.33,7.3,4.2)
ZK-8 4.3(4.1,5.77,1.1) TO(31,TO,12) 6.8(5.7,31,17) 14(5.1,42,23)
Total 35.05 363.44 284.72 359.69
Bugs 18 16 15 13

VI. LIMITATIONS

Compared to other distributed system fuzzers, DistFuzz has
increased the testing input space by including regular events
and timing intervals among events. Our evaluation shows that,
for all systems we evaluate, the increase in the testing input
space significantly improves rather than reduces DistFuzz’s
effectiveness (§V-B). This is largely due to DistFuzz’s effective
feedback approach. However, if certain bugs can be triggered
by simple regular events and/or are not timing-dependent, it
may take DistFuzz a longer time to expose them.

As demonstrated in §V-D, our feedback approach signifi-
cantly improves the fuzzing performance in general. However,
we note that, in some rare cases, our feedback approach may
identify two potentially different message sequences as the
same. Specifically, suppose a distributed system’s message
lengths are always the same, then discarding the message
contents will negatively affect fuzzing performance. Similarly,
if all nodes in a system have different roles, the node IDs
are thus important information and should not be discarded.
However, we believe that few real-world distributed systems
confirm the above two characteristics.

We note that the limitations in DistFuzz are fundamentally
due to the constraints in blackbox fuzzing. Due to this con-
straint, to increase effectiveness, DistFuzz makes assumptions
that apply to most distributed systems. Considering the huge
improvement in general efficiency, such limitations do not
undermine the value of techniques.

VII. RELATED WORK

The most relevant state-of-the-art work (i.e., Jepsen [21],
Mallory [37], and CrashFuzz [15]) has been qualitatively (§I
and §III) and quantitatively compared (§V-C) across the paper.
This section discusses other related work.

Model checking. Compared to DistFuzz, distributed systems
model checkers [29], [32], [64] are for different purposes
and thus are orthogonal to DistFuzz. Fundamentally, model
checkers aim to validate that, given a set of fixed testing
workloads, all the states that the SUT can reach are valid. As a
result, model checkers exhaustively enumerate all the reachable
states with the given testing workloads. In contrast, DistFuzz
aims to explore different workloads and faults to expose hidden
bugs. DistFuzz does not aim to systematically explore all
possible states but instead relies on feedback mechanisms to
prioritize exploring interesting states.

In addition, due to the need to (i) exhaustively enumerate all
reachable states, model checkers further differ from DistFuzz
in the following aspects. First, model checkers require access
to source code [64] and/or user inputs [32] while DistFuzz
does not. This is because, for exhaustive exploration, model
checkers need extra insights on the SUT such as the code
semantics and/or users’ domain knowledge. For example,
to ensure that the timeout event leads to different states,
Modist [64] employs specific code static analysis to identify
the timeout handlers. Second, model checkers have a much
higher testing overhead compared to DistFuzz. This is because,
for exhaustive exploration, model checkers need to ensure
the SUT executes deterministically, by, e.g., controlling the
thread scheduling to explore all possible interleavings [64]
caused by multithreading. Such mechanisms often significantly
increase the testing overhead. DistFuzz is free of this kind of
overhead and still maintains the advantages of deterministically
reproducing reported bugs (§IV-C).

DistFuzz’s approach on leveraging symmetry to prune the
essentially same message (§III-C) is related to FlyMC [32]
model checker. Both of them perform reduction based on
partial orders. The difference is that FlyMC applies symmetry
to prune redundant states and FlyMC relies on user inputs
to define and identify which part of the states are significant.
DistFuzz applies symmetry to prune redundant message se-
quences without requiring user inputs.

Fuzzing. Fuzzing is a promising testing technique and has
been widely used in testing system software. Prior works
apply fuzzing to complex system software, including operating
systems [50], [56], [58], fundamental libraries [2], [6], [19],
hypervisors [18], [48], filesystems [24], [63] and network
programs [33], [45], [51], [55], [70]. These approaches have
produced good results in bug detection. Some of them also
use techniques like multi-dimension inputs [6], [58], [70] and
checkpointing [51], [56] to improve the fuzzing efficiency.
DistFuzz, referring to existing model checking and testing
methods [21], [28], [37], [52], apply fuzzing to distributed
systems and overcome the shortcomings of existing fuzzing
and testing tools for distributed systems by mutating regular
events and timing interval, and leveraging symmetry to prune
redundant message sequences.

VIII. CONCLUSION

This paper presents DistFuzz, the first feedback-driven
black-box fuzzing framework for distributed systems based on
our findings on the nature of real-world distributed systems
and defects of prior fuzzers. DistFuzz proposes a multi-
dimensional input space by incorporating regular events and

13

relative timing among events, and utilizes sequences of net-
work messages with symmetry-based pruning as feedback.
We deploy DistFuzz to test 10 popular distributed systems.
DistFuzz finds 52 real bugs, and 28 have been confirmed by
the developers. 20 of the 28 confirmed bugs are previously
unknown, and 4 have been assigned with CVEs.

IX. ACKNOWLEDGEMENT

We want to thank the anonymous reviewers for their sug-
gestions to improve the final version of this paper. This work
was supported by the Fundamental Research Funds for the
Central Universities. Jia-Ju Bai is the corresponding author.

APPENDIX A
ARTIFACT APPENDIX

This Appendix contains a complete description on the
artifacts presented in our paper, and detailed instructions on
how to access, install, and evaluate them.

A. Description & Requirements

This section provides all the information necessary to
recreate the experimental setup to run our artifacts. A recent
X86 desktop or server machine should be sufficient to run the
experiments.

1) How to access: The artifact is available on
Github 2. We recommend using the latest Docker image
zouyonghao/distfuzz:artifact as described in the
README.md file. A Docker image for offline use is also
available on Zenodo 3.

2) Hardware dependencies: We have tested DistFuzz on
Intel i9-10980XE and Intel(R) Xeon(R) Gold 6248R with
60GB memory. No special settings are needed. A recent
commodity PC build should be able to run DistFuzz and its
reproduction feature. We recommend using a similar Intel CPU
series with our tested CPUs. DistFuzz does not require too
much memory, but to ensure a good performance, a machine
with more than 16GB of memory is recommended.

3) Software dependencies: A recent Linux operating sys-
tem is required. Our artifacts have been tested on Ubuntu
20.04 LTS (Focal). Docker is required to run the artifact. We
recommend using the latest Docker version (27.0.3).

4) Benchmarks: None.

B. Artifact Installation & Configuration

We suggest to run the experiments using the Docker image
we provide. Many capabilities are required to run the artifact,
so we suggest running the Docker image with the following
command.

docker run -it --network none \
--cap-add=NET_ADMIN \
--device=/dev/net/tun \
--cap-add=SYS_PTRACE \
--cap-add=SYS_NICE \
--cap-add=IPC_LOCK \

2https://github.com/zouyonghao/DistFuzz
3https://doi.org/10.5281/zenodo.14098389

--security-opt \
seccomp=unconfined \
zouyonghao/distfuzz:artifact

Alternatively, you can build the Docker image from the
source code. This method requires first cloning the repository
via git clone and then building the Docker image via
docker build in the cloned directory. Running without
Docker is also possible, but it requires installing all the de-
pendencies manually which is described in the INSTALL.md
file in the repository.

C. Experiment Workflow

The artifacts contain three experiments. The first is using
DistFuzz to fuzz the evaluated systems described in the paper.
The second is reproducing the bugs found by DistFuzz for
etcd and ZooKeeper. The third is testing the checkpoint time
of different systems. The proposed workflow runs the three
experiments sequentially. The repository contains scripts that
can be used to automate all experiments. This Appendix only
illustrates the commands to run at each step, while extensive
documentation is provided in the repository.

D. Major Claims

• (C1): DistFuzz can fuzz and find bugs in distributed
systems with multi-dimensional inputs and symmetry-
based feedback prune.

• (C2): DistFuzz’s rr can reproduce bugs in distributed
systems.

• (C3): DistFuzz’s checkpointing mechanism can reduce the
boot time of distributed systems.

E. Evaluation

1) Experiment (E1): [Fuzzing distributed systems] [30
human-minutes + 24 compute-hour]: fuzzing the systems eval-
uated in the paper using DistFuzz. For each system, there is
a folder called ${SYSTEM}_test, e.g., braft_test. The
experiment should run in the folder.

[Preparation] In a new Docker container started with
the provided command, go to the ${SYSTEM}_test/bin
folder.

[Execution] Execute the script fuzz.sh in the folder.

[Results] The script will start the fuzzing process. The out-
put will show that DistFuzz is starting the target system nodes
and sending events to them. After fuzzing for a while, you can
check test cases that have errors under test_cases. Fuzzing
status is in the file output/fuzzer1/plot-curve and
the column starting with bc is the coverage.

2) Experiment (E2): [Reproducing bugs using DistFuzz’s
rr] [30 human-minutes + 2 compute-hour]: reproducing the
bugs found by DistFuzz in etcd and ZooKeeper using Dis-
tFuzz’s rr. We provide example bug reproduction Docker
images we used during our communication with developers.
Please note that rr has requirements for CPU, so it is better to
use a machine described in the hardware dependencies section.

[Preparation] Pull all three Docker images for the bug
reproduction. The images are zouyonghao/etcd-13493

14

and zouyonghao/etcd-10166 for 2 etcd bugs in the
paper, and zouyonghao/distfuzz:zookeeper-rr for
8 ZooKeeper bugs. rr requires hardware and software settings
to run, including precise hardware performance counters and
kernel setting perf_event_paranoid = 1. Please check
these settings before running the experiments.

[Execution] Run the following commands to reproduce the
bugs.

For the first etcd bug
docker run -it --rm \

--cap-add=SYS_PTRACE \
--security-opt \
seccomp=unconfined \
zouyonghao/etcd-13493 \
rr replay -a \
/root/test_cases/3169/rr_rec_1_0

For the second etcd bug
docker run -it --rm \

--cap-add=SYS_PTRACE \
--security-opt \
seccomp=unconfined \
zouyonghao/etcd-10166 \
rr replay -a \
/root/10166/rr_rec_2_0

For ZooKeeper bugs (8 bugs)
docker run -it --rm \

--cap-add=SYS_PTRACE \
--security-opt \
seccomp=unconfined \
zouyonghao/distfuzz:zookeeper-rr \
rr replay -a \
/home/zyh/zookeeper-[1-8]

[Results] The commands will start a process running a
system’s node. The output will show that the system is starting
and replaying the recorded events. After replaying, the system
will crash or output error logs. The bug is the same as the one
found by DistFuzz.

3) Experiment (E3): [Checkpointing] [30 human-minutes
+ 2 compute-hour]: comparing the boot time of systems with
no checkpointing, checkpointing and checkpointing + tmpfs.
For each system’s ${SYSTEM}_test/bin, there is a folder
called experiments/boot_time_test. The experiment
should run in the folder.

[Preparation] In a new Docker container started with
the provided command, go to the ${SYSTEM}_test/bin/
experiments/boot_time_test folder.

[Execution] Execute the script test_boot_time.sh in
the folder.

[Results] The script will start booting the system with dif-
ferent configurations. The boot time for each configuration will
be recorded to a file called test_boot_time_result.

REFERENCES

[1] “Aerospike database server: flash-optimized, in-memory, nosql
database.” 2022, https://github.com/aerospike/aerospike-server.

[2] “AFL: American Fuzzy Lop,” 2020, https://github.com/google/AFL.
[3] “Amazon Web Services outage causes issues at Disney, Netflix, and

Coinbase,” 2021, https://www.cnbc.com/2021/12/07/amazon-web-servi
ces-outage-causes-issues-at-disney-netflix-coinbase.html.

[4] “Summary of the AWS service event in the US East Region,” 2024,
https://aws.amazon.com/message/67457/.

[5] “An industrial-grade C++ implementation of Raft consensus algorithm,”
2021, https://github.com/baidu/braft.

[6] P. Chen, Y. Xie, Y. Lyu, Y. Wang, and H. Chen, “Hopper: Interpre-
tative fuzzing for libraries,” in Proceedings of the 30th International
Conference on Computer and Communications Security (CCS), 2023,
pp. 1600–1614.

[7] “ClickHouse: an open-source, high performance columnar OLAP
database management system for real-time analytics using SQL.” 2022,
https://clickhouse.com/.

[8] “Consistency model used in distributed systems,” 2024, https://en.wik
ipedia.org/wiki/Consistency_model.

[9] “CRIU, a project of checkpoint/restore functionality for Linux,” 2022,
https://criu.org.

[10] G. DeCandia, D. Hastorun, M. Jampani, G. Kakulapati, A. Lakshman,
A. Pilchin, S. Sivasubramanian, P. Vosshall, and W. Vogels, “Dynamo:
Amazon’s highly available key-value store,” ACM SIGOPS Operating
Systems Review, vol. 41, no. 6, pp. 205–220, 2007.

[11] Z. Y. Ding and C. Le Goues, “An empirical study of OSS-Fuzz bugs,” in
Proceedings of the 18th International Conference on Mining Software
Repositories (MSR), 2021, pp. 131–142.

[12] “Dqlite: an embeddable, replicated and fault-tolerant sql engine.” dqli
te.io.

[13] “etcd: a distributed, reliable key-value store for the most critical data
of a distributed system,” 2022, https://etcd.io/.

[14] A. Fioraldi, D. Maier, H. Eißfeldt, and M. Heuse, “AFL++: combining
incremental steps of fuzzing research,” in Proceedings of the 14th
USENIX Workshop on Offensive Technologies (WOOT), 2020.

[15] Y. Gao, W. Dou, D. Wang, W. Feng, J. Wei, H. Zhong, and T. Huang,
“Coverage guided fault injection for cloud systems,” in Proceedings
of the 45th International Conference on Software Engineering (ICSE),
2023, pp. 2211–2223.

[16] S. Ghemawat, H. Gobioff, and S.-T. Leung, “The Google file system,”
in Proceedings of the 9th ACM Symposium on Operating Systems
Principles (SOSP 03), 2003, pp. 29–43.

[17] C. Guo, L. Yuan, D. Xiang, Y. Dang, R. Huang, D. A. Maltz, Z. Liu,
V. Wang, B. Pang, H. Chen, Z. Lin, and V. Kurien, “Pingmesh: A large-
scale system for data center network latency measurement and analysis,”
in Proceedings of the 2015 International Conference on Special Interest
Group on Data Communication (SIGCOMM), 2015, pp. 139–152.

[18] A. Henderson, H. Yin, G. Jin, H. Han, and H. Deng, “VDF: targeted
evolutionary fuzz testing of virtual devices,” in Proceedings of the 20th
International Symposium on Recent Advances in Intrusion Detection
(RAID), 2017, p. 23.

[19] “Honggfuzz: a security oriented, feedback-driven, evolutionary, easy-
to-use fuzzer with interesting analysis options.” 2023, https://github.c
om/google/honggfuzz.

[20] P. Hunt, M. Konar, F. P. Junqueira, and B. Reed, “ZooKeeper: wait-free
coordination for Internet-scale systems,” in Proceedings of the 2010
USENIX Annual Technical Conference, 2010, p. 14.

[21] “Jepsen: a framework for distributed systems verification, with fault
injection.” 2024, https://github.com/jepsen-io/jepsen.

[22] Z.-M. Jiang, J.-J. Bai, and Z. Su, “Dynsql: stateful fuzzing for database
management systems with complex and valid sql query generation,”
in Proceedings of the 32nd USENIX Security Symposium, 2023, pp.
4949–4965.

[23] M. E. Joorabchi, M. MirzaAghaei, and A. Mesbah, “Works for me!
characterizing non-reproducible bug reports,” in Proceedings of the
2014 International Conference on Mining Software Repositories (MSR),
P. T. Devanbu, S. Kim, and M. Pinzger, Eds., 2014, pp. 62–71.

[24] S. Kim, M. Xu, S. Kashyap, J. Yoon, W. Xu, and T. Kim, “Finding
semantic bugs in file systems with an extensible fuzzing framework,” in
Proceedings of the 27th International Symposium on Operating Systems
Principles (SOSP), 2019, pp. 147–161.

15

https://github.com/aerospike/aerospike-server
https://github.com/google/AFL
https://www.cnbc.com/2021/12/07/amazon-web-services-outage-causes-issues-at-disney-netflix-coinbase.html
https://www.cnbc.com/2021/12/07/amazon-web-services-outage-causes-issues-at-disney-netflix-coinbase.html
https://aws.amazon.com/message/67457/
https://github.com/baidu/braft
https://clickhouse.com/
https://en.wikipedia.org/wiki/Consistency_model
https://en.wikipedia.org/wiki/Consistency_model
https://criu.org
dqlite.io
dqlite.io
https://etcd.io/
https://github.com/google/honggfuzz
https://github.com/google/honggfuzz
https://github.com/jepsen-io/jepsen

[25] G. Klees, A. Ruef, B. Cooper, S. Wei, and M. Hicks, “Evaluating
fuzz testing,” in Proceedings of the 25th International Conference on
Computer and Communications Security (CCS), 2018, pp. 2123–2138.

[26] “Knossos: verifies the linearizability of experimentally accessible his-
tories.” 2021, https://github.com/jepsen-io/knossos.

[27] L. Lamport, “The part-time parliament,” ACM Transactions on Com-
puter Systems (TOCS), vol. 16, no. 2, pp. 133–169, 1998.

[28] H. Lee, J. Seibert, E. Hoque, C. Killian, and C. Nita-Rotaru, “Turret:
A platform for automated attack finding in unmodified distributed sys-
tem implementations,” in Proceedings of the 2014 IEEE International
Conference on Distributed Computing Systems, 2014, pp. 660–669.

[29] T. Leesatapornwongsa, J. F. Lukman, S. Lu, and H. S. Gunawi, “TaxDC:
a taxonomy of non-deterministic concurrency bugs in datacenter dis-
tributed systems,” in Proceedings of the 21st International Conference
on Architectural Support for Programming Languages and Operating
Systems (ASPLOS), 2016, pp. 517–530.

[30] J. Li, B. Zhao, and C. Zhang, “Fuzzing: a survey,” Cybersecurity, vol. 1,
no. 1, p. 6, Jun. 2018.

[31] J. Lu, L. Chen, L. Li, and X. Feng, “Understanding node change bugs
for distributed systems,” in Proceedings of the 26th IEEE Interna-
tional Conference on Software Analysis, Evolution and Reengineering
(SANER), 2019, pp. 399–410.

[32] J. F. Lukman, H. Ke, C. A. Stuardo, R. O. Suminto, D. H. Kurni-
awan, D. Simon, S. Priambada, C. Tian, F. Ye, T. Leesatapornwongsa,
A. Gupta, S. Lu, and H. S. Gunawi, “FlyMC: highly scalable testing
of complex interleavings in distributed systems,” in Proceedings of the
14th European Conference on Computer Systems (EuroSys), 2019, pp.
1–16.

[33] Z. Luo, F. Zuo, Y. Jiang, J. Gao, X. Jiao, and J. Sun, “Polar: function
code aware fuzz testing of ICS protocol,” ACM Transactions on
Embedded Computing Systems, vol. 18, no. 5s, pp. 93:1–93:22, 2019.

[34] “Addresssanitizer: stack-buffer-overflow in server.c,” 2023, https://gith
ub.com/redis/redis/issues/12005.

[35] “For jepsen: extra online spare,” https://github.com/canonical/dqlite/is
sues/585.

[36] “Raft: membership rollback issue,” https://github.com/canonical/raft/is
sues/250.

[37] R. Meng, G. Pîrlea, A. Roychoudhury, and I. Sergey, “Greybox fuzzing
of distributed systems,” in Proceedings of the 30th International Con-
ference on Computer and Communications Security (CCS), 2023, pp.
1615–1629.

[38] B. P. Miller, L. Fredriksen, and B. So, “An empirical study of the
reliability of UNIX utilities,” Communications of the ACM, vol. 33,
no. 12, pp. 32–44, Dec. 1990.

[39] “CVE - MITRE,” 2024, https://cve.mitre.org/.
[40] “Namazu: programmable fuzzy scheduler for testing distributed sys-

tems,” 2016, https://github.com/osrg/namazu.
[41] “NuRaft: C++ implementation of Raft core logic as a replication

library.” 2022, https://github.com/eBay/NuRaft.
[42] R. O’Callahan, C. Jones, N. Froyd, K. Huey, A. Noll, and N. Partush,

“Engineering record and replay for deployability,” in Proceedings of the
2017 USENIX Annual Technical Conference, 2017, pp. 377–389.

[43] D. Ongaro and J. Ousterhout, “In search of an understandable consensus
algorithm,” in Proceedings of the 2014 USENIX Annual Technical
Conference, 2014, pp. 305–320.

[44] K. Ousterhout, P. Wendell, M. Zaharia, and I. Stoica, “Sparrow:
distributed, low latency scheduling,” in Proceedings of the 2017 Sym-
posium on Operating Systems Principles (SOSP), 2013, pp. 69–84.

[45] V. Pham, M. Böhme, and A. Roychoudhury, “AFLNet: a greybox
fuzzer for network protocols,” in Proceedings of the 13th International
Conference on Software Testing, Validation and Verification (ICST),
2020, pp. 460–465.

[46] “RedisRaft: a Redis module that make it possible to create a consistent
Raft cluster from multiple Redis instances.” 2022, https://github.com/R
edisLabs/redisraft.

[47] “RethinkDB: the open-source database for the realtime web,” 2022,
https://github.com/rethinkdb/rethinkdb.

[48] S. Schumilo, C. Aschermann, A. Abbasi, S. Worner, and T. Holz,
“HYPER-CUBE: high-dimensional hypervisor fuzzing,” in Proceedings

of 27th Annual Network and Distributed System Security Symposium
(NDSS), 2020.

[49] S. Schumilo, C. Aschermann, A. Abbasi, S. Wörner, and T. Holz, “Nyx:
greybox hypervisor fuzzing using fast snapshots and affine types,” in
Proceeding of the 30th USENIX Security Symposium, 2021, pp. 2597–
2614.

[50] S. Schumilo, C. Aschermann, R. Gawlik, S. Schinzel, and T. Holz,
“kAFL: hardware-assisted feedback fuzzing for OS kernels,” in Pro-
ceedings of the 26th USENIX Security Symposium, 2017, pp. 167–182.

[51] S. Schumilo, C. Aschermann, A. Jemmett, A. Abbasi, and T. Holz,
“Nyx-net: network fuzzing with incremental snapshots,” in Proceedings
of the 17th European Conference on Computer Systems (EuroSys), 2022,
pp. 166–180.

[52] C. Scott, A. Panda, V. Brajkovic, G. Necula, A. Krishnamurthy, and
S. Shenker, “Minimizing faulty executions of distributed systems,” in
Proceedings of the 13th USENIX Symposium on Networked Systems
Design and Implementation (NSDI), 2016, pp. 291–309.

[53] K. Serebryany, D. Bruening, A. Potapenko, and D. Vyukov, “Address-
Sanitizer: A fast address sanity checker,” in Proceedings of the 2012
USENIX Annual Technical Conference, Boston, MA, Jun. 2012, pp.
309–318.

[54] K. Shvachko, H. Kuang, S. Radia, and R. Chansler, “The hadoop
distributed file system,” in Proceedings of the 2010 IEEE Symposium
on Mass Storage Systems and Technologies (MSST), 2010, pp. 1–10.

[55] J. Somorovsky, “Systematic fuzzing and testing of TLS libraries,” in
Proceedings of the 23rd International Conference on Computer and
Communications Security (CCS), 2016, pp. 1492–1504.

[56] D. Song, F. Hetzelt, J. Kim, B. B. Kang, J.-P. Seifert, and M. Franz,
“Agamotto: Accelerating kernel driver fuzzing with lightweight virtual
machine checkpoints,” in Proceedings of the 29th USENIX Security
Symposium. USENIX Association, Aug. 2020, pp. 2541–2557.

[57] “Linux strace is a diagnostic, debugging and instructional userspace
utility for Linux.” 2023, https://strace.io/.

[58] “Syzkaller: an unsupervised coverage-guided kernel fuzzer,” 2021, http
s://github.com/google/syzkaller.

[59] “Trinity: a linux system call fuzz tester,” 2019, https://github.com/ker
nelslacker/trinity.

[60] “Valgrind: an instrumentation framework for building dynamic analysis
tools,” 2023, https://valgrind.org/.

[61] V. K. Vavilapalli, A. C. Murthy, C. Douglas, S. Agarwal, M. Konar,
R. Evans, T. Graves, J. Lowe, H. Shah, S. Seth, B. Saha, C. Curino,
O. O’Malley, S. Radia, B. Reed, and E. Baldeschwieler, “Apache
Hadoop YARN: yet another resource negotiator,” in Proceedings of the
4th ACM Symposium on Cloud Computing (SoCC), 2013, pp. 1–16.

[62] “Distributed computing,” https://en.wikipedia.org/wiki/Distributed_co
mputing.

[63] W. Xu, H. Moon, S. Kashyap, P.-N. Tseng, and T. Kim, “Fuzzing file
systems via two-dimensional input space exploration,” in Proceedings
of the 40th IEEE Symposium on Security and Privacy, 2019, pp. 818–
834.

[64] J. Yang, T. Chen, M. Wu, Z. Xu, X. Liu, H. Lin, M. Yang, F. Long,
L. Zhang, and L. Zhou, “MODIST: transparent model checking of
unmodified distributed systems,” in Proceedings of the 6th USENIX
Symposium on Networked Systems Design and Implementation (NSDI),
2009, p. 16.

[65] D. Yuan, Y. Luo, X. Zhuang, G. R. Rodrigues, X. Zhao, Y. Zhang, P. U.
Jain, and M. Stumm, “Simple testing can prevent most critical failures:
an analysis of production failures in distributed data-intensive systems,”
in Proceedings of the 11th International Symposium on Operating
Systems Design and Implementation (OSDI), 2014, pp. 249–265.

[66] W. Yuan, S. Lu, H. Sun, and X. Liu, “How are distributed bugs
diagnosed and fixed through system logs?” Information and Software
Technology (IST), vol. 119, pp. 1–18, 2020.

[67] X. Zhao, Y. Zhang, D. Lion, M. FaizanUllah, Y. Luo, D. Yuan, and
M. Stumm, “lprof: a non-intrusive request flow profiler for distributed
systems,” in Proceedings of the 11th International Symposium on
Operating Systems Design and Implementation (OSDI), 2014, p. 16.

[68] X. Zhu, S. Wen, S. Camtepe, and Y. Xiang, “Fuzzing: a survey for
roadmap,” ACM Computing Surveys, Jan. 2022.

16

https://github.com/jepsen-io/knossos
https://github.com/redis/redis/issues/12005
https://github.com/redis/redis/issues/12005
https://github.com/canonical/dqlite/issues/585
https://github.com/canonical/dqlite/issues/585
https://github.com/canonical/raft/issues/250
https://github.com/canonical/raft/issues/250
https://cve.mitre.org/
https://github.com/osrg/namazu
https://github.com/eBay/NuRaft
https://github.com/RedisLabs/redisraft
https://github.com/RedisLabs/redisraft
https://github.com/rethinkdb/rethinkdb
https://strace.io/
https://github.com/google/syzkaller
https://github.com/google/syzkaller
https://github.com/kernelslacker/trinity
https://github.com/kernelslacker/trinity
https://valgrind.org/
https://en.wikipedia.org/wiki/Distributed_computing
https://en.wikipedia.org/wiki/Distributed_computing

[69] “Zookeeper-4409 nullpointerexception in sendackrequestprocessor,” ht
tps://github.com/apache/zookeeper/pull/1774.

[70] Y.-H. Zou, J.-J. Bai, J. Zhou, J. Tan, C. Qin, and S.-M. Hu, “TCP-Fuzz:
detecting memory and semantic bugs in TCP stacks with fuzzing,” in
Proceedings of the 2021 USENIX Annual Technical Conference, 2021,
pp. 489–502.

17

https://github.com/apache/zookeeper/pull/1774
https://github.com/apache/zookeeper/pull/1774

	Introduction
	Background and Motivation
	Common Natures in Distributed Systems
	Blackbox Fuzzing for Distributed Systems
	Prior Work on Fuzzing Distributed System

	The DistFuzz Fuzzing Framework
	DistFuzz Overview
	Mutating Regular Events and Timing Interval
	Network Messages with Symmetry-Based Pruning
	Minimizing Testing Overhead
	Discussion

	Implementation
	Checkers
	Events
	Bug Reproduction

	Evaluation
	Experimental Setup
	Runtime Testing
	Comparison to Existing Frameworks
	The Effectiveness of Two Conceptual Contributions
	Impact of Timing Intervals

	Limitations
	Related Work
	Conclusion
	Acknowledgement
	Appendix A: Artifact Appendix
	Description & Requirements
	How to access
	Hardware dependencies
	Software dependencies
	Benchmarks

	Artifact Installation & Configuration
	Experiment Workflow
	Major Claims
	Evaluation
	Experiment (E1)
	Experiment (E2)
	Experiment (E3)

	References

