
Effective Crash Recovery of Robot Software Programs in ROS

Yong-Hao Zou and Jia-Ju Bai

Abstract— Modern robot systems use various software pro-
grams to autonomously perform different kinds of tasks.
However, due to the risks of possible faults and errors, a robotic
software program can inevitably crash in some cases, causing
that the robot system fails to perform the current task. Thus, for
robustness, the crashed program should be correctly recovered
to continue the failed task. For this purpose, ROS provides a de-
fault restart method to automatically restart crashed programs.
However, our case studies of typical ROS programs show that
the restart method can perform incorrect crash recovery, and
it can even cause the robot to perform dangerous behaviors,
because this method loses the program’s important data that
was stored before the crash and is used after recovery. To solve
this problem, we develop a practical approach named RORY,
to perform effective crash recovery of robot software programs
in ROS. RORY uses a hybrid checkpoint-replay method, and
it is generic to different ROS programs by considering ROS
properties. We evaluate RORY on 6 common ROS programs,
and show that RORY performs correct crash recovery in both
virtual and realistic environments with modest overhead. The
comparison experiments indicate that RORY outperforms the
restart, checkpoint-alone and replay-alone methods.

I. INTRODUCTION

Nowadays robot systems have been widely used in avia-
tion, manufacturing, transportation, biology and many other
areas. To enhance generality and scalability, a modern robot
system uses various software programs to autonomously per-
form different kinds of tasks, such as map building, human-
robot interaction and navigation. However, due to the risks of
possible faults and errors (such as transient faults, configu-
ration errors and code bugs), a robotic software program can
inevitably crash in some cases, causing that the robot fails to
perform the current task. This problem is especially serious
for the robot systems working in unmanned environments
(such as forests and deserts), because the developers cannot
conveniently perform manual recovery. Thus, for robustness,
the robot system should automatically and correctly recover
the crashed software program to continue the failed task.

To this end, ROS [1] provides a default restart method [2]
to automatically restart crashed programs that run as ROS
nodes. This restart method has been widely used to perform
crash recovery of common ROS programs. However, our
case studies of two typical ROS programs in Section II-C
show that, the ROS restart method can perform incorrect
crash recovery, and it can even cause the robot to perform
dangerous behaviors, as it loses the program’s important data
(such as the already built map) that was stored before the

Yong-Hao Zou and Jia-Ju Bai are with the Department of Computer
Science and Technology, Tsinghua University, Beijing, China. Jia-Ju Bai is
the corresponding author.

crash and is used after recovery. Implementing a customized
recovery method for a specific ROS program is feasible, but
this method is hardly generic to other ROS programs.

To solve this problem, our basic idea is to introduce two
classical recovery methods checkpoint and replay to recover
ROS programs. Achieving this idea has two key challenges:

C1) The checkpoint and replay methods both have their
own limitations. Specifically, the effectiveness of the check-
point method heavily relies on the checkpoint frequency; and
replaying program inputs is quite time-consuming when the
program crashes after running for a long time.

C2) The crash recovery should be generic to different ROS
programs. For this purpose, ROS properties (such as the node
model for process execution and message passing for inter-
node communication) should be fully considered in recovery.

To solve these challenges, we develop a practical approach
named RORY, to perform effective crash recovery of robot
software programs in ROS. RORY uses a hybrid checkpoint-
replay method to ensure recovery correctness and improve
efficiency, and it is generic to different ROS programs by
considering ROS properties. Specifically, when a program
node runs, RORY records its important data at fixed intervals
to create checkpoints, and collects the messages received
by the node during each interval. When the node crashes,
RORY performs crash recovery using four steps. First, RORY
automatically controls the robot to enter a safe status (such
as stationary status). Second, RORY isolates the node by
stopping its message passing, to avoid disturbance to the
recovery process caused by messages from/to other nodes.
Third, RORY restarts the node, restores the last checkpoint,
and replays the collected messages received by the node dur-
ing the last checkpoint interval. Finally, RORY finishes the
recovery by releasing the node isolation to make the node run
normally again. Compared to the ROS restart method, RORY
can effectively recover the program’s important data that was
stored before the crash, to improve recovery correctness. In
this paper, we make three main contributions:

• We study the questions proposed by ROS developers
and make case studies of typical ROS programs, and
find that the ROS restart method can perform incorrect
crash recovery in practical use.

• We develop a new approach named RORY to perform
effective crash recovery of robot software programs.

• We evaluate RORY on 6 common ROS programs in
both virtual and realistic environments, and RORY per-
forms correct crash recovery with modest overhead. The
comparison experiments show that RORY outperforms
the restart, checkpoint-alone and replay-alone methods.



The rest of this paper is organized as follows. Section II
introduces the motivation of our work. Section III introduces
RORY. Section IV presents the evaluation. Section V intro-
duces the related work, and Section VI concludes this paper.

II. MOTIVATION

We first introduce ROS and its restart method, and then
motivate our work by a study of developers’ questions about
ROS programs and case studies of typical ROS programs.

A. ROS and Its Restart Method
ROS (Robot Operating System) [1] is an open-source

software platform of developing and running robotic pro-
grams. Because ROS provides many easy-to-use tools and
libraries that can simplify the task of creating complex and
robust robot behaviors, it has been widely used in research
and industry. For extensibility, ROS runs each process of a
software program as a ROS node. Each node communicates
with other nodes via message passing, which is implemented
by publish-subscribe style. For example, when Node A needs
to send a message to Node B, Node A publishes a specific
topic, and Node B subscribes to this topic.

Due to the risks of possible faults and errors, a ROS node
can inevitably crash in some cases, causing the robot fails to
perform the current task. Thus, for robustness, ROS provides
a default restart method to automatically restart the crashed
node for continuing the task. To enable this restart method,
the user needs to set a specific flag respawn=“true” in the
node’s launch file.

B. Study of Developers’ Questions about ROS Programs
To understand the effectiveness of the ROS restart method,

we perform a manual study of the questions proposed in the
“ROS Answers” website [3]. We select this website, because
it contains many questions proposed by ROS developers for
implementing and running ROS programs. We collect the
questions from Jan. 2014 to Dec. 2019 (6 years) containing
the keyword “crash”, and manually select the questions
focusing on the crashes of ROS nodes, resulting in 518
questions. We manually read the content of these questions,
and find that 60 of them explicitly complain that the robot
works abnormally after using the ROS restart method to
perform crash recovery. Figure 1 shows such an example1 of
the move base node. This question complains that the node
loses correct parameters after restart, causing the robot to
move incorrectly in the map.

Fig. 1. A question about the ROS restart method for crash recovery.

1https://answers.ros.org/question/198950/move base-respawning-with-
wrong-parameters-after-crash/

C. Case Studies of Typical ROS Programs

To validate the effectiveness of the ROS restart method
in practical use, we make case studies of two typical ROS
programs, namely move base [4] and hector mapping [5].
They are executed on a virtual robot TurtleBot3 Waffle in
a robot simulation framework Gazebo 9.0 [6]. We run the
move base program to perform route planning, and run the
hector mapping program to build the environment map.

Case 1: Route planning. As shown in Figure 2(a), we
create a 2D environment containing nine pillars, and let the
robot automatically move from a start point to a goal point.
We run move base to automatically plan the route on the
given map and avoid hitting the pillars. Figure 2(a) shows
that the robot successfully finishes the task in the normal
case. Then, we enable the ROS restart method, and cause
move base to crash by killing it while the robot moves. As
shown in Figure 2(b), we observe that the ROS automatically
restarts the crashed node, but the robot moves on a wrong
route and dangerously hits a pillar. Indeed, move base uses
the goal point’s location data and the robot’s current-location
data to plan the route, but such important data stored before
the crash is lost after restart, and thus move base cannot use
such data to correctly plan the route.

Start point

Goal point

Start point

Goal point

Hit! !

Start point

Goal point

(a) Normal (b) Restart (c) RORY

Crash + 
restart

Crash + 
recovery

Fig. 2. Case study of route planning.

Case 2: Map building. As shown in Figure 3(a), we create
a 2D environment and manually control the robot to move
from a start point to a goal point. While the robot moves,
we run hector mapping with a virtual lidar to build a 2D
map of the environment. Figure 3(a) shows that the robot
successfully finishes the task in the normal case. Then, we
enable the ROS restart method, and cause hector mapping
to crash by killing it while the robot moves. As shown in
Figure 3(b), we observe that the built map is incomplete, and
the map data stored before the crash is all lost.

Goal point

Start point

Goal point

Start point

Crash + restart

Goal point

Start point

Crash + recovery

(a) Normal (b) Restart (c) RORY

Fig. 3. Case study of map building.

In fact, the ROS restart method can perform correct crash
recovery for the case that the program’s data stored before
the crash is never used after recovery. This requirement can
be satisfied for the programs that never store data, such as



the chassis program that simply transfers commands to the
chassis without data storage. However, many common ROS
programs need to store data for subsequent work, such as
move base and hector mapping in our case studies. Thus,
for these programs, the ROS restart method can perform
incorrect crash recovery. For this reason, it is important to
design a new and generic approach that can perform effective
crash recovery of robot software programs. In Figure 2(c) and
Figure 3(c), we compare our approach RORY to the ROS
restart method, and find that RORY produces better results.

III. RORY DESIGN

Checkpoint and replay are two classical crash-recovery
methods that have been widely used in common long-running
programs (such as distributed-system software and network-
service applications). The checkpoint method records pro-
gram data at fixed intervals to create checkpoints during
program execution. When the program crashes, it first restarts
the program and then restores the last checkpoint. But the
effectiveness of the checkpoint method heavily relies on the
checkpoint frequency. It may miss much latest program data
when the checkpoint frequency is low, and may introduce
much overhead when the checkpoint frequency is high. The
replay method continuously records the inputs of the program
during program execution. When the program crashes, it
restarts the program and replays the recorded inputs to the
program. But replaying inputs is quite time-consuming when
the program crashes after running for a long time.

Inspired by the above two methods, we develop a new and
practical approach named RORY, to perform effective crash
recovery of robot software programs in ROS. RORY exploits
a hybrid checkpoint-replay method to relieve the limitations
of the checkpoint and replay methods alone, in order to
ensure recovery correctness and improve efficiency. Besides,
RORY is generic to different ROS programs by considering
ROS properties.

Target 
ROS node

Message 
switcher

Message 
handler

Messages

Messages

Recovery 
controller

Program 
signals

Messages

Other 
ROS nodes

Replay 
messages Checkpoint 

handler

Restore 
checkpoint

Create 
checkpoint

Fig. 4. Overall architecture of RORY.

Figure 4 shows the overall architecture of RORY, which
consists of four parts. The recovery controller is used to
detect the crash of the target ROS node and control the
process of crash recovery; the message switcher is used
to control message passing of the ROS node; the message
handler is used to record and replay messages of the ROS
node; the checkpoint handler is used to create and restore
checkpoints for the ROS node. In RORY, each of these parts
is implemented as a simple and light-weight ROS node.
Based on this architecture, RORY consists of two phases:

P1: Runtime monitoring. While the target ROS node runs
normally, RORY records its important data at fixed intervals
to create checkpoints, and records messages received by the
ROS node during each interval. Figure 5 shows the basic
procedure of this phase.

Checkpoint 0 Checkpoint 1 Checkpoint 2 C3
Crash!

Message 
collection

Message 
collection

Message 
collection

ROS node 
execution

Fig. 5. Procedure of runtime monitoring.

Checkpoint creation. RORY first instruments the key vari-
ables that contain the program’s important data at compile
time, and then uses the checkpoint handler to record their
values via the ROS parameter server [7] for creating check-
points at fixed intervals during program execution. Note that
these key variables are specific to the target program. For
example in the move base code, the variables storing the
robot’s current-location data and goal-location data are key
variables; in the hector mapping code, the variables storing
the robot’s current-location data and already built map data
are key variables. After the user manually provides the key
variables in a specific configuration file, RORY instruments
them automatically.

Message recording. RORY uses the message switcher to
forward messages between other ROS nodes and the target
ROS node, and uses the message handler to records the
messages received by the target ROS node via the Rosbag
tool [8]. Specifically, for each message, RORY records its
timestamp, message content and published topic. When a
new checkpoint is created, RORY drops all recorded mes-
sages and starts new message recording.
P2: Crash recovery. When the target ROS node crashes
during execution, namely its exceptional signal is caught by
the recovery controller, RORY automatically performs crash
recovery according to the program data recorded in runtime
monitoring, with four steps shown in Figure 6.

Status control

Node isolation

Data recovery

Isolation release

Restart

Checkpoint restoring

Message replay

Fig. 6. Steps of crash recovery.

S1: Status control. RORY uses the recovery controller to
notify the message switcher, message handler and checkpoint
handler of starting crash recovery, and to communicate with
other ROS nodes to make the robot enter a safe status.
The safe status is specific to the robot’s tasks and physical
environment. In many cases, the robot is considered to be
safe when it is stationary with performing no behavior. Thus,
the recovery controller sends messages to the ROS nodes
controlling robot movement (e.g., the move base and chassis
nodes) to keep the robot stationary.

S2: Node isolation. RORY isolates the crashed ROS node
by stopping its message passing. This step is necessary,



because other ROS nodes are unaware of that the node has
crashed and they can still communicate with the node via
messages, causing two possible side effects: 1) other ROS
nodes may send messages to the crashed node, which may
disturb its recovery process; 2) other ROS nodes may be
disturbed by the messages sent by the crashed node during its
recovery process. Specifically, the message switcher disables
message passing between the crashed node and other ROS
nodes, to isolate the node.

S3: Data recovery. RORY first restarts the crashed ROS
node, and then uses the last checkpoint and recorded mes-
sages to recover its important data. To restore checkpoint,
when the node is initialized, the checkpoint handler retrieves
these key variables stored in the ROS parameter server. To
replay messages, after the node is initialized, the message
handler sends the messages recorded in the Rosbag tool to the
node. Note that in ROS, each message is sent through a spe-
cific topic, and a node receives this message by subscribing to
this topic. Thus, to replay messages to the node, the message
handler creates a shadow topic for each original topic to
which the node subscribes, and lets the node subscribe to
all such shadow topics. Through these shadow topics, the
recorded messages are replayed strictly according to their
timestamps. For example, before the node crashes, suppose
that it receives MSG1 at the time point P1 and then receives
MSG2 at the time point P2. Accordingly, when replaying
MSG1 and MSG2 during crash recovery, RORY first replays
MSG1 and then replays MSG2 after waiting for P2-P1 time.

S4: Isolation release. RORY releases the isolation of the
crashed ROS node by enabling its message passing. Then,
the node can normally communicate with other ROS nodes to
continue its task. Specifically, the message switcher enables
message passing between the crashed node and other ROS
nodes, to release the isolation.

IV. EVALUATION

A. Experimental Setup
To validate the effectiveness of RORY, we perform eval-

uation on a virtual robot TurtleBot3 Waffle in the robot
simulation framework Gazebo 9.0 and a physical robot based
on the TurtleBot2 platform. Figure 7 shows the physical
robot, which has a iClebo Kobuki chassis [9], a SICK
TIM551-2050001 2D lidar [10] and a ASUS Xtion PRO
LIVE 3D camera [11]. For the virtual and physical robots, we
test 6 common ROS programs with ROS Melodic Morenia
in Ubuntu 18.04:

• hector mapping [5]. It implements a SLAM approach
that can be used without odometry. We use it to build
a 2D map with the lidar, while the robot moves.

• RTAB-Map [12]. It implements a RGB-D, stereo and
lidar graph-based SLAM approach with an incremental
appearance-based loop closure detector. We use it to
build a 2D map with the camera, while the robot moves.

• ORB SLAM2 [13]. It is a real-time SLAM library that
computes the camera trajectory and a sparse 3D recon-
struction. We use it to reconstruct a 3D model with the
camera, while the robot moves.

Computer

RGB-D Camera

LiDAR

iClebo Kobuki chassis

Fig. 7. The physical robot used in the experiment.

• move base [4]. It provides an implementation of at-
tempting to reach the goal with a mobile chassis, given
a goal in the world. We use it to perform route planning
for the robot navigation.

• AMCL [14]. It implements an adaptive Monte Carlo
localization approach, which uses a particle filter to
track the position of a robot against a known map. We
use it to perform localization for the robot navigation.

• LaMa local [15]. It is a fast scan matching approach
to mobile robot localization supported by a continuous
likelihood field. We use it to perform localization for
the robot navigation.

We configure the virtual robot to work in two virtual
environments Office small and Workshop selected from the
3DGEMS datasets [16]. We place the physical robot in a
realistic room containing an obstacle, and we subsequently
refer to this environment as Real room. In each environment,
we manually control the robot to move from a start point to a
goal point, and run hector mapping, RTAB-Map to build a 2D
map of the environment and run ORB SLAM2 to build a 3D
model of the environment. Then, with a complete 2D map
of the environment, we run move base for route planning
and run AMCL and LaMa local for localization, to make the
robot automatically move from a start point to a goal point.
In the evaluation, we set the interval of creating checkpoints
in RORY as 2 seconds. The user can conveniently change
this interval as needed.

B. Crash Recovery

For each tested ROS program, we first run its node nor-
mally without crash, as the normal case. Then, we manually
kill the node to simulate a crash caused by a transient fault;
when the program node runs for 9 seconds, we run the ROS
restart method and RORY to perform crash recovery of this
node, respectively. Finally, we compare the robot’s behaviors
and produced results in the normal and crash cases, to check
whether the two methods perform correct crash recovery.

For hector mapping, RTAB-Map and ORB SLAM2, we
check whether the map or model produced in the crash case
is complete compared to the normal case; for move base,
AMCL and LaMa local, we check whether the robot reaches
the goal point in the crash case. We run each program in
each environment five times. Table I shows the results. The
symbol X means the recovery is correct in all the tests, and
the symbol × means the recovery is incorrect in all tests.



TABLE I
RESULTS OF CRASH RECOVERY.

Program Office small Workshop Real room
Restart RORY Restart RORY Restart RORY

hector mapping × X × X × X
RTAB-Map × X × X × X
ORB SLAM2 × X × X × X
move base × X × X × X
AMCL × X × X × X
LaMa local × X × X × X

From Table I, we find that the ROS restart method per-
forms incorrect crash recovery in all the tests, as it loses the
program’s important data that was stored before the crash
and is used after recovery. Specifically, for hector mapping
and RTAB-Map, the built map is incomplete, as the map
data collected before the crash is all lost; for ORB SLAM2,
the reconstructed model is incomplete, as the model data
collected before the crash is all lost; for move base, AMCL
and LaMa local, the robot does not reach the goal, and it
even dangerously hits the wall or objects in some tests, as
the goal point’s location data and the robot’s current-location
data stored before the crash are lost. On the contrary, RORY
performs correct crash recovery for all the tests, as it recovers
the program’s important data that was stored before the crash.

Start pointStart point

Goal pointGoal point

Start point

Goal point

Normal Restart RORY

(a) RTAB-Map

Crash +
restart

Crash +
recovery

Start pointStart pointStart point

Goal point Goal point Goal point

Crash +
restart

Crash +
recovery

(b) AMCL

Get lost! !

Normal Restart RORY

Fig. 8. Results in the Workshop virtual environment.

Figure 8 shows the recovery results of RTAB-Map and
AMCL in the Workshop virtual environment. In Figure 8(a),
the built map is incomplete when the ROS restart method is
used, while the built map is more complete when RORY is
used. In Figure 8(b), the robot gets lost when the ROS restart
method is used, while the robot reaches the goal when RORY
is used. In summary, RORY produces better results than the
ROS restart method in crash recovery.

TABLE II
RUNTIME OVERHEAD OF RORY.

Program Original RORY
CPU Memory CPU Memory

hector mapping 19.3% 440M 31.4% (1.6x) 487M (1.1x)
RTAB-Map 15.9% 520M 19.3% (1.2x) 577M (1.1x)
ORB SLAM2 25.3% 907M 29.3% (1.2x) 1237M (1.4x)
move base 5.2% 422M 6.4% (1.2x) 481M (1.1x)
AMCL 5.6% 420M 6.5% (1.2x) 477M (1.1x)
LaMa local 14.5% 282M 16.9% (1.2x) 371M (1.3x)

C. Runtime Overhead

The main runtime overhead of RORY is caused by runtime
monitoring of the program node. To quantify this overhead,
we measure the CPU utilization and memory cost of the
target program node and RORY during execution. We only
perform this experiment on the physical robot in the en-
vironment Real room, because we believe that the results
of the physical robot is more representative to quantify the
realistic overhead. We test each program five times and then
calculate the average value of CPU utilization and memory
cost. Table II shows the measurement results. We find that
the runtime overhead of RORY is about 1.2x on average,
which is modest in practical use.

D. Comparison Experiment

When performing crash recovery, RORY uses a hybrid
checkpoint-replay method. To show the value of this hybrid,
we implement a checkpoint-alone method and a replay-alone
method, and compare them to RORY. Then, we evaluate
these two methods and RORY on the 6 tested ROS programs
in the three environments. We run each program with each
method in each environment five times. As in Section IV-B,
we manually kill the node to cause a crash when it runs for
9 seconds, and use the three methods to perform recovery.

Table III and Table IV show the recovery correctness and
time usage, respectively. The symbol X means the recovery
is correct in all the tests, the symbol × means the recovery
is incorrect in all tests, and the symbol ? means the recovery
is correct in some tests but incorrect in the other tests. From
Table III and Table IV, we make two observations:

First, the checkpoint-alone method fails to perform correct
crash recovery in the most tests. Because this method loses
the program’s important data stored between the last check-
point and crash point, it cannot retrieve such data in crash
recovery. However, we also observe that the checkpoint-
alone method performs correct crash recovery in several tests
of AMCL and LaMa local. Indeed, AMCL and LaMa local
both use a probabilistic algorithm for localization, and thus
in some cases, they can still produce correct results even
though history data is lost. Compared to the checkpoint-alone
method, RORY additionally records and replays the mes-
sages that the program receives between the last checkpoint
and crash point, which makes data recovery more complete;
but RORY spends a longer time than the checkpoint-alone
method in recovery, due to replaying messages.



TABLE III
RECOVERY CORRECTNESS IN THE COMPARISON EXPERIMENT.

Program Office small Workshop Real room
Checkpoint Replay RORY Checkpoint Replay RORY Checkpoint Replay RORY

hector mapping × X X × X X × X X
RTAB-Map × X X × X X × X X
ORB SLAM2 × X X × X X × X X
move base × X X × X X × X X
AMCL ? X X ? X X ? X X
LaMa local ? X X ? X X ? X X

TABLE IV
RECOVERY TIME IN THE COMPARISON EXPERIMENT.

Program Office small (ms) Workshop (ms) Real room (ms)
Checkpoint Replay RORY Checkpoint Replay RORY Checkpoint Replay RORY

hector mapping 2145 9560 3997 2141 9534 3971 2478 9939 4157
RTAB-Map 5 11214 2903 3 11582 2892 9 12991 4397
ORB SLAM2 1 9960 3410 1 9460 3280 3 9910 3070
move base 1 9459 1597 1 9318 1547 1 9155 1478
AMCL 1 9603 1615 2 9343 1649 8 10162 2235
LaMa local 1 9766 2334 1 9634 2301 3 9667 2267

Second, the replay-alone method performs correct crash
recovery for all the tests, but its recovery time is much
longer than that of RORY. Indeed, for most ROS program
nodes, their inputs are just messages, and thus replaying the
recorded messages can perform correct recovery. However,
the replay-alone method records and relays all the messages
that the program receives between the start time and the
crash point, and these messages must be replayed in order
according to their timestamps. Thus, in theory, the recovery
time of the replay-alone method should be equal or longer
than the node’s execution time before crash. Compared to
the replay-alone method, RORY records and replays the mes-
sages that the node receives only between the last checkpoint
and the crash point, and thus it spends less time on replaying
messages. Thus, plus the time usage of restoring checkpoint,
which is often little in practice, RORY spends a shorter time
than the replay-alone method on crash recovery.

V. RELATED WORK

Existing approaches that can perform crash recovery of
robot software programs are based on the restart, redundancy
or checkpoint methods.

Based on the ROS restart method, some approaches [17]–
[19] perform fault tolerance of ROS programs. However, our
case studies in Section II-C show that the restart method
can perform incorrect crash recovery, because it loses the
program’s important data that was stored before the crash
and is used after recovery.

Some approaches [20]–[23] are redundancy-based, namely
they run one or more redundant nodes of the target ROS
program. They forward the messages received by the orig-
inal node to these redundant nodes at runtime. When the
original node crashes, these approaches automatically replace
the crashed node with a redundant node to continue the
work. However, realistic robot systems often have limited
system resources and computing capacity, and thus running
redundant nodes may be quite expensive when the target
program is large and complex.

Two recent approaches [24], [25] exploit the checkpoint
method to perform crash recovery of the ROS master. How-
ever, like the checkpoint-alone method that we implemented
in Section IV-D, they may lose the program’s important data
stored between the last checkpoint and crash point. On the
contrary, RORY uses a hybrid checkpoint-replay method to
improve the completeness of data recovery, and it is also
generic to different ROS programs.

VI. CONCLUSION

For robustness of robot systems, when a robot software
program crashes, it should be correctly recovered to continue
its task. To this end, ROS provides a default restart method
for crash recovery. However, our case studies on typical ROS
programs show that this method can perform incorrect crash
recovery, because it loses the program’s important data that
was stored before the crash and is used after recovery. To
solve this problem, we propose a practical approach named
RORY, to perform effective crash recovery of robot software
programs in ROS. RORY uses a hybrid checkpoint-replay
method, and it is generic to different ROS programs by
considering ROS properties. The evaluation on 6 common
ROS programs shows its effectiveness.

RORY can be improved in some aspects. For example, the
time usage of replaying messages in RORY is still a bit long,
as RORY replays all the recorded messages strictly according
to their timestamps. We plan to reduce this time usage by
analyzing the dependency between recorded messages and
dropping the messages that are useless for recovery. Besides,
we only use RORY to recover single-robot programs at
present. We plan to apply RORY to multi-robot programs,
by considering synchronization between multiple robots.

ACKNOWLEDGMENT

We thank anonymous reviewers for their comments, and
thank Shi-Min Hu and Julia Lawall for their suggestions on
improving the paper. This work was supported by the Natural
Science Foundation of China under Project 62002195.



REFERENCES

[1] “ROS: an open-source software platform for building robot applica-
tions,” https://www.ros.org/.

[2] “Configure the ROS launch file to restart crashed node,” https://wiki.
ros.org/roslaunch/XML/node.

[3] “Questions and answers of using the ROS,” https://answers.ros.org/
questions/.

[4] “move base: a package for route planning and movement control for
the robot,” http://wiki.ros.org/move base.

[5] “hector mapping: a scalable SLAM approach for the robot,”
http://wiki.ros.org/hector mapping.

[6] “Gazebo: a robot simulation framework,” http://gazebosim.org/.
[7] “Parameter server for storing and retrieving data in the ROS,”

http://wiki.ros.org/Parameter%20Server.
[8] “Rosbag tool in the ROS,” http://wiki.ros.org/rosbag.
[9] “SICK TIM551-2050001 2D lidar,” https://www.sick.com/us/en/

detection-and-ranging-solutions/2d-lidar-sensors/tim5xx/tim551-
2050001/p/p343045.

[10] “iClebo Kobuki chassis,” http://kobuki.yujinrobot.com/.
[11] “ASUS Xtion PRO LIVE 3D camera,” https://www.asus.com/ 3D-

Sensor/Xtion PRO LIVE.
[12] “RTAB-Map: an application of real-time appearance-based mapping,”

https://github.com/introlab/rtabmap.
[13] R. Mur-Artal and J. D. Tardós, “ORB-SLAM2: an open-source SLAM

system for monocular, stereo and RGB-D cameras,” IEEE Transac-
tions on Robotics, vol. 33, no. 5, pp. 1255–1262, 2017.

[14] “AMCL: a probabilistic localization application for a robot moving in
2D,” http://wiki.ros.org/amcl.

[15] E. Pedrosa, A. Pereira, and N. Lau, “Efficient localization based on
scan matching with a continuous likelihood field,” in Proceedings of
the 2017 International Conference on Autonomous Robot Systems and
Competitions (ICARSC), 2017, pp. 61–66.

[16] “3DGEMS: 3D Gazebo model dataset,” http://data.nvision2.eecs.
yorku.ca/3DGEMS/.

[17] S. Zaman, G. Steinbauer, J. Maurer, P. Lepej, and S. Uran, “An inte-
grated model-based diagnosis and repair architecture for ROS-based
robot systems,” in Proceedings of the 2013 International Conference
on Robotics and Automation (ICRA), 2013, pp. 482–489.

[18] S. Zaman and G. Steinbauer, “Automated generation of diagnosis
models for ROS-based robot systems,” in Proceedings of the 24th
International Workshop on Principles of Diagnosis, 2013, pp. 92–98.

[19] A. Lutac, N. Chechina, G. Aragon-Camarasa, and P. Trinder, “Towards
reliable and scalable robot communication,” in Proceedings of the 15th
International Workshop on Erlang, 2016, pp. 12–23.

[20] M. Lauer, M. Amy, J.-C. Fabre, M. Roy, W. Excoffon, and M. Sto-
icescu, “Engineering adaptive fault-tolerance mechanisms for resilient
computing on ROS,” in Proceedings of the 17th International Sym-
posium on High Assurance Systems Engineering (HASE), 2016, pp.
94–101.

[21] M. Amy, J.-C. Fabre, and M. Lauer, “Towards adaptive fault tolerance
on ROS for advanced driver assistance systems,” in Proceedings of the
47th International Conference on Dependable Systems and Networks
Workshops (DSN-W), 2017, pp. 29–35.

[22] M. Lauer, M. Amy, J.-C. Fabre, M. Roy, W. Excoffon, and M. Sto-
icescu, “Resilient computing on ROS using adaptive fault tolerance,”
Journal of Software: Evolution and Process, vol. 30, no. 3, 2018.

[23] H. Ahn, S. C. Ahn, J. Heo, and S. Y. Shin, “Fault tolerant framework
and techniques for component-based autonomous robot systems,”
in Proceedings of the 2011 International Symposium on Applied
Computing (SAC), 2011, pp. 566–572.

[24] T. Jain and G. Cooperman, “DMTCP: fixing the single point of failure
of the ROS master,” 2017.

[25] P. Kaveti and H. Singh, “ROS Rescue: fault tolerance system for Robot
Operating System,” arXiv preprint arXiv:1910.01078, 2019.


