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Abstract— ROS is popular in robotic-software development,
and thus detecting bugs in ROS programs is important for
modern robots. Fuzzing is a promising technique of runtime
testing. But existing fuzzing approaches are limited in testing
ROS programs, due to neglecting ROS properties, such as
multi-dimensional inputs, temporal features of inputs and the
distributed node model. In this paper, we develop a new fuzzing
framework named ROZZ, to effectively test ROS programs and
detect bugs based on ROS properties. ROZZ has three key tech-
niques: (1) a multi-dimensional generation method to generate
test cases of ROS programs from multiple dimensions, including
user data, configuration parameters and sensor messages; (2) a
distributed branch coverage to describe the overall code coverage
of multiple ROS nodes in the robot task; (3) a temporal mutation
strategy to generate test cases with temporal information. We
evaluate ROZZ on 10 common robotic programs in ROS2, and
it finds 43 real bugs. 20 of these bugs have been confirmed
and fixed by related ROS developers. We compare ROZZ to
existing approaches for testing robotic programs, and ROZZ
finds more bugs with higher code coverage.

I. INTRODUCTION

An increasing number of modern robots are built based on
ROS [1], which contains many practical software libraries
and tools for robot development. However, developing reli-
able and secure ROS programs is actually difficult, as they
often have complex control logics and need to handle various
kinds of exceptions (such as invalid user data and abnormal
sensor messages). Because ROS programs often control
robots to interact with the physical world and humans,
even a simple bug (such as null-pointer dereference) can
cause dangerous consequences. Moreover, the attackers can
exploit security bugs (such as use-after-free bugs) to steal
confidential data or even maliciously take over the robot.
Thus, testing ROS programs for bug detection is important.

Fuzzing is a popular technique of runtime testing to cover
infrequently-executed code and detect bugs. Most fuzzing ap-
proaches [2]–[9] automatically mutate and generate program
inputs according to the program feedback of code coverage.
These approaches have shown good results of bug detection
in real-world applications. Thus, applying fuzzing to ROS
programs seems promising. But in practice, fuzzing ROS
programs is difficult and challenging due to ROS properties:

P1) ROS programs receive multi-dimensional inputs, such
as user data, configuration parameters and sensor messages.
But existing fuzzing approaches generate test cases from only
one dimension, namely user inputs. Thus, these approaches
may fail to cover much code in ROS programs.
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P2) ROS programs are executed in the distributed node
model. Specifically, each ROS program runs as a ROS node,
which communicates with other ROS nodes to cooperatively
perform a robot task. Thus, testing a separate ROS node
is often meaningless, and multiple ROS nodes in the task
should be tested together. But existing fuzzing approaches
focus on testing a specific program at a time according to its
code coverage, and thus they are limited in testing distributed
programs, due to lacking an effective coverage metric to
describe the overall feedback of these programs.

P3) The inputs of ROS programs have temporal features.
Specifically, messages sent from each ROS node are sequen-
tial, and such a message sequence can be disordered due to
communication instability caused by network interruption or
USB disconnection. But existing fuzzing approaches focus
on mutating input data without considering temporal infor-
mation. Thus, these approaches cannot effectively test the
code of handling temporal information.

Several recent approaches [10]–[14] explore the applica-
tion of fuzzing to robotic programs, using some new fuzzing
strategies and bug checkers. However, these approaches still
fail to solve the above three challenges. For example, these
approaches generate test cases from only one dimension,
such as user data or sensor messages.

To solve the above three challenges and improve fuzzing
on ROS programs, we propose three key techniques:

For P1, we design a multi-dimensional generation method
to generate effective test cases of ROS programs from multi-
ple dimensions, including user data, configuration parameters
and sensor messages. Specifically, user data include control
information from GUI, command lines and ROS services.
Configuration parameters are stored in specific configuration
files, and they are used to configure ROS nodes for the robot
task. Sensor messages are collected from sensor nodes used
in the robot task, and we fuzz them because sensors can be
malfunctioning or untrusted [14]. To ensure the syntactical
correctness of test cases, we generate the inputs from each
dimension according to related grammar rules and formats.

For P2, we propose a distributed branch coverage to
describe the overall code coverage of multiple ROS nodes
in the robot task. During the test of robot task, we collect
and combine the covered branches of each ROS node as
the overall feedback of the involved ROS nodes. If any new
branch in any ROS node is covered at runtime, we identify
the test case of this test to be an interesting seed, and put it
into a seed pool for further test-case mutation and generation.

For P3, we design a temporal mutation strategy to generate
test cases with temporal information. For each sensor node,



we collect the message sequence sent from this node to
other ROS nodes, and mutate the order of this message
sequence to simulate communication instability. Specifically,
we provide three available patterns for temporal mutation,
including message dropping, resending and reordering.

Based on the three key techniques, we develop a novel and
automated fuzzing framework named ROZZ, to effectively
test ROS programs and detect bugs. We implement ROZZ
with LLVM [15]. Overall, we make three main contributions:

• To improve fuzzing on robotic programs, we propose
three key techniques: (1) a multi-dimensional generation
method to generate test cases of ROS programs from
multiple dimensions; (2) a distributed branch coverage
to describe the overall code coverage of multiple ROS
nodes; (3) a temporal mutation strategy to generate test
cases with temporal information.

• Based on the three key techniques, we develop a novel
fuzzing framework named ROZZ to test ROS programs.

• We evaluate ROZZ on 10 common robotic programs in
ROS2, and it finds 43 real bugs. 20 of them have been
confirmed and fixed by related ROS developers. We also
experimentally compare ROZZ to existing approaches
of testing robotic programs, and ROZZ finds more bugs
with higher code coverage.

The rest of this paper is organized as follows. Section II
introduces our key techniques for ROS fuzzing. Section III
shows ROZZ. Section IV presents the evaluation. Section V
discusses the limitations and future work. Section VI intro-
duces the related work. Section VII concludes this paper.

II. KEY TECHNIQUES

A. Multi-Dimensional Generation Method
When the robot runs multiple ROS programs to perform a

task, it often receives inputs from three dimensions: (1) user
data, namely the data provided the user to manage the robot,
including control information from GUI, command lines and
ROS services; (2) configuration parameters, which are read
from specific configuration files to configure the robot, such
as maximum moving speed and minimum rotation angle;
(3) sensor messages, namely the messages generated from
sensors (such as laser lidar) used to communicate with the
physical world. In fact, the inputs from these dimensions
can be invalid or even malicious (such as messages from
untrusted sensors). To test whether ROS nodes can correctly
handle such cases, our method generates test cases containing
the inputs from these dimensions, as shown in Figure 1.

Our method stores user data, configuration parameters and
sensor messages in some specific input files. ROS programs
read these input files to perform the task during fuzzing.
In each test, our method mutates and combines the data
of these input files to generate a new test case for ROS
programs. Note that the inputs from each dimension have
specific grammar rules and fixed formats, and the inputs vio-
lating these grammar rules and formats are directly dropped
by ROS programs without further processing. To generate
syntactically-correct inputs, our method automatically parses
the input files before mutation.
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Fig. 1. Test-case generation from multiple dimensions.

In practice, sensors used in the robot are provided by
hardware vendors, and thus it is difficult for the user to
arbitrarily change sensor messages. This is different from
user data and configuration parameters, which can be arbi-
trarily changed by the user. Moreover, we believe that each
sensor works normally in most cases, and it only occasionally
malfunctions due to hardware problems. Thus, we think that
generating totally artificial sensor messages is not realistic
enough to find real bugs. With this in mind, before fuzzing,
our method first runs the robot normally to performs the task
and collects sensor messages during execution; and then our
method mutates only several items in the collected sensor
messages during fuzzing. In this way, the generated sensor
messages can be more realistic to find real bugs.

B. Distributed Branch Coverage

In ROS, robotic programs are executed in the distributed
node model. Specifically, each ROS program runs as a
ROS node, which communicates with other ROS nodes
via message passing to cooperatively perform a task. Thus,
multiple ROS nodes in the task should be tested together.
To describe the code coverage of these ROS nodes, we first
collect the covered code branches of each ROS node in the
task, and then combine these code branches with ROS node
name to make up the distributed branch coverage of this task.
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Fig. 2. Example of distributed branch coverage.

Figure 2 shows an example task that involves three ROS
nodes. While these nodes perform the task, we collect the
sets of their covered code branches as BrSetA, BrSetB and
BrSetC. Then, we combine these branch sets with the names
of related ROS nodes, and calculate the distributed branch
coverage of this task as {[Node A, BrSetA], [Node B, BrSetB],
[Node C, BrSetC]}. With this metric, we can clearly identify
the code-branch changes of each ROS node in different tests.
Thus, this metric is used as program feedback when fuzzing
multiple ROS nodes in the given task.

C. Temporal Mutation Strategy

Each ROS node communicates messages with other ROS
nodes via socket by default [16], and messages sent from
this node make up a message sequence. In practice, such
communication can be instable to make a message sequence
disordered. This case is relatively common for sensor nodes,
as sensors are often connected with the robot via network or
USB bus that can be instable. For example, some messages
in the message sequence from sensors can be lost, due to
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Fig. 3. Message interception.

network interruption or USB disconnection. To test whether
ROS nodes can correctly handle such cases, our strategy
changes the order of several messages in the sensor-message
sequence to generate test cases with temporal information.

As shown in Figure 3, our strategy automatically inserts
a message interceptor between the sensor node and the
target node, to intercept message sequences from the sensor
node. To simulate communication instability, this interceptor
receives the message sequence generated from the sensor
node, then mutates the order of this message sequence
to change its temporal information, and finally sends the
modified message sequence to the target node. Each message
interceptor is implemented as a light-weight ROS node.
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Fig. 4. Available patterns of temporal mutation.

Inspired by recent approaches of testing distributed sys-
tems [17], [18], our strategy provides three available pat-
terns for temporal mutation of message sequences, including
message dropping, resending and reordering. When temporal
mutation is performed, one of these patterns is randomly
selected. Figure 4 shows the examples of these three pat-
terns. Different from mutating the data of sensor messages
in Section II-A, our strategy only changes the order of
messages in the sequence without changing message data.
When generating test cases, our temporal mutation works
together with data mutation of messages, to perform spatio-
temporal mutation of sensor messages.

III. ROZZ DESIGN

Based on the three key techniques in Section II, we design
a novel fuzzing framework named ROZZ, to effectively test
ROS programs and detect bugs based on ROS properties.
We have implemented ROZZ using Clang 9.0 [19]. ROZZ
automatically performs code instrumentation and dynamic
analysis on the LLVM bytecode of the tested ROS programs.

Figure 5 shows the overall architecture of ROZZ, which
consists of four parts:
Code analyzer. It first uses Clang to compile the source code
of ROS programs into LLVM bytecode, then instruments
code branches in the LLVM bytecode, and finally compiles
the instrumented LLVM bytecode to generate executable
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Fig. 5. ROZZ architecture.

ROS nodes. Moreover, the analyzer automatically modifies
the configuration files of ROS nodes in the robot task to
enable message interceptors for sensor nodes.
Information analyzer. First, it checks the distributed branch
coverage for multiple ROS nodes in the test. If this metric
is increased, namely any new code branch in any ROS
node is covered, the analyzer identifies the test case of this
test to be an interesting seed, and puts it into a seed pool
for further test-case mutation and generation. Second, the
analyzer randomly selects a seed from the seed pool, and
uses our multi-dimensional generation method and temporal
mutation strategy to mutate this seed and generate new
test cases. Each test case contains user data, configuration
parameters and sensor messages for multiple ROS nodes,
and the analyzer randomly mutates the data of these inputs
or the order of sensor messages.
Node monitor. It executes the instrumented code to collect
covered code branches in each ROS node, and then calculates
the distributed branch coverage of ROS nodes in the test.
Besides, the monitor also collects the runtime information
about node execution for bug detection.
Bug checkers. They analyze the collected runtime informa-
tion to detect bugs and generate bug reports. These checkers
are independent from ROZZ. The user can implement cus-
tomized checkers or conveniently run third-party sanitizers
(such as ASan [20], MSan [21] and UBSan [22]) in ROZZ.

IV. EVALUATION

We test 10 common robotic programs in ROS2, and they
are of the latest versions as of our evaluation. Table I shows
the information about these ROS programs (the lines of
source code are counted by CLOC [23]). These programs are
executed on a virtual robot TurtleBot3 Waffle in the robot
simulation framework Gazebo 11.5 [24], to perform a robot
navigation (for movement and localization programs) and a
map building (for movement and SLAM programs) tasks.
The used virtual sensors include a laser lidar, an odometry,
a 2D camera and an IMU (Inertial Measurement Unit). The
experiments run on a regular x86-64 desktop with eight Intel
processors and 20GB physical memory. The used operating
system is Ubuntu 20.04, and the ROS2 version is ROS2 Foxy.

A. Runtime Testing

We run a common and third-party sanitizer ASan [20] with
ROZZ to detect memory bugs at runtime. Each program is
tested with the related robot task for 24 hours. Table II shows
the testing results.



TABLE I
INFORMATION ABOUT THE TESTED ROS PROGRAMS.

Type Program Description LOC

Movement

nav2 bt navigator [25] BT navigator module in ROS2 navigation 6.2K
nav2 planner [26] Path planner module in ROS2 navigation 10.4K
nav2 recoveries [27] Recovery module in ROS2 navigation 1.2K
nav2 controller [28] Controller module in ROS2 navigation 6.3K

Localization
nav2 amcl [29] Localization module in ROS2 navigation 14.4K
lama loc [30] Alternative localization and mapping method 9.5K
ekf loc [31] Kalman Filter based localization method 0.8K

SLAM
rtab-map [32] Real-time RGB-D SLAM approach 26.1K
slam toolbox [33] a set of tools and capabilities for 2D SLAM 15.1K
cartographer [34] Real-time 2D and 3D SLAM approach 7.8K

TABLE II
RESULTS OF FUZZING ROBOTIC PROGRAMS IN ROS2.

Program Covered branch Bug detection
Fuzzing Test suite Found bug Confirmed bug

nav2 bt navigator 24.3K 17.2K 3 2
nav2 planner 27.9K 25.9K 6 5
nav2 recoveries 15.8K 16.4K 2 2
nav2 controller 37.6K 25.1K 3 1
nav2 amcl 12.2K 12.0K 9 7
lama loc 25.3K 20.7K 3 0
ekf loc 16.2K 5.2K 1 0
rtab-map 70.9K 59.3K 8 1
slam toolbox 30.9K 10.7K 3 2
cartographer 59.9K 52.1K 5 0
Total 320.9K 244.5K 43 20

Testing coverage. To understand testing-coverage improve-
ment of ROZZ, we also run official test suites or benchmarks
of each ROS program for 24 hours and collect the number
of covered code branches. Compared to running test suites,
ROZZ covers 31% more code branches in the tested pro-
grams, benefiting from our fuzzing approach based on ROS
properties. Note that we find no bug when running official
test suites or benchmarks.
Found bugs. ROZZ finds 43 real bugs in the test programs
with no false positive. These bugs can be actually reproduced
using ROZZ and its generated test cases. We have reported
these bugs to related ROS developers, and 20 of them have
been confirmed and fixed. We are still waiting for feedback
to the remaining bugs. Besides, 14 of our patches that fix 18
bugs have been applied. Note that five tested programs whose
names contain “nav2” are developed and maintained by the
ROS community, and these programs are widely used in
ROS-based robots. Therefore, the 17 confirmed bugs in these
five programs receive serious attention by ROS developers.
Bug types. We also classify the 43 found bugs according to
their types, and summarize the results in Table III. In detail,
there are 6 null-pointer dereferences, 5 use-after-free bugs,
3 buffer/stack-overflow bugs, 11 invalid-pointer accesses and
18 uncaught exceptions. Once these bugs are triggered with
specific inputs, runtime failures and serious security prob-
lems can occur at runtime. Specifically, null-pointer deref-
erences and uncaught exceptions can cause program crashes
that abnormally abort the robot task; buffer/stack-overflow
bugs, use-after-free bugs and invalid-pointer accesses can
cause undefined behaviors of the robot and increase the risks
of malicious attacks to the robot.
Bug features. We manually review the 43 found bugs, and
find four interesting features of these bugs:

TABLE III
TYPES OF THE FOUND BUGS.

Program NullPtr UAF Overflow InvalidPtr Exception All
nav2 bt navigator 1 0 0 0 2 3
nav2 planner 0 2 1 2 1 6
nav2 recoveries 0 2 0 0 0 2
nav2 controller 0 0 1 1 1 3
nav2 amcl 2 0 0 6 1 9
lama loc 2 0 0 0 1 3
ekf loc 0 0 0 0 1 1
rtab-map 0 0 1 1 6 8
slam toolbox 1 1 0 1 0 3
cartographer 0 0 0 0 5 5
Total 6 5 3 11 18 43

(1) The 5 use-after-free bugs are caused by data races.
Specifically, a memory object is freed in one thread, but this
object is still used in the other thread without synchroniza-
tion. Due to non-determinism of concurrent execution, these
bugs are hard to find in normal execution.

(2) Among the 18 uncaught exceptions, 8 bugs are caused
by internal exceptions in the code of the tested programs,
and 10 bugs are caused by external exceptions (they are of
“runtime error” type in C++) of API calls from third-party
software libraries and ROS core components used by the
tested ROS programs. This feature indicates that both internal
and external exceptions should be carefully caught and han-
dled in ROS programs. For example, in nav2 bt navigator,
nav2 planner, nav2 controller and nav2 amcl, four external
exceptions about negative time interval from the ROS rclcpp
component are not caught, which can cause program crashes.
These four bugs have been fixed by our patches through
catching and handling related external exceptions.

(3) 11 bugs occur in the initialization process of ROS
programs. 6 of these bugs are caused by incorrect error
handling of invalid user data and bad configuration pa-
rameters during initialization; and 5 bugs are caused by
missing synchronization between the initialization process
and message handling. Thus, the initialization process should
receive muc attention when testing ROS programs.

(4) By manually checking the backtraces of the found
bugs, we find that 7 bugs are located in third-party libraries
and ROS core components used by the tested ROS programs.
These libraries and components include libopencv, fastrtps,
eigen, tf2 and rclcpp. In the experiments, we use ASan to
instrument only the tested ROS programs not these libraries
or components, and thus we cannot find the accurate loca-
tions of these bugs. To solve these problems, we attempt to
use ASan to instrument these libraries and components, but
none of them can support ASan in our attempts. Even so, we
still locate one bug (stack overflow) in rclcpp by manually
reviewing its source code without using ASan, and this bug
has been confirmed and fixed by the rclcpp developers.

B. Root Causes of the Confirmed Bugs

As for the 20 confirmed and fixed bugs, by analyzing the
source code and discussing with related ROS developers, we
summarize three root causes of these bugs:

(1) 7 bugs are caused by the concurrency of callback func-
tions. In ROS programs, external events (such as message



FILE: navigation2/nav2_costmap_2d/src/footprint_subscriber.cpp
67. FootprintSubscriber::getFootprint(...) {

 ......
 // Use the smart pointer footprint_ in Thread A

76. footprint = toPointVector(..., footprint_->polygon); // UAF!
 ......

85. }

105. FootprintSubscriber::footprint_callback(...) {
 // Free the smart pointer footprint_ in Thread B

106. footprint_ = msg;
 ......

110. }

FILE:  rtabmap_ros/src/CoreWrapper.cpp 
87. CoreWrapper::CoreWrapper(...) {

 ......
141. double tfDelay = 0.05;  // Local variable

......
// Create a new thread

579. transformThread_ = new std::thread([&](){
580. if (tfDelay == 0)  // Stack overflow!
581. return;

 ......
599. });

 ......
719. }

FILE: navigation2/nav2_costmap_2d/plugins/obstacle_layer.cpp 
276. ObstacleLayer::laserScanCallback(...) {

 ...... 
285. try {

 // Can throw an implicit exception about negative time
 // interval in message

286. projector_.transformLaserScanToPointCloud(...,
*message, ...);

287. } catch (tf2::TransformException & ex) {
 ......

294. } // Fail to catch the above implicit exception!
 ......

307. }

(a) Use-after-free bug in nav2_planner (b) Uncaught exception in nav2_controller (c) Stack-overflow bug in rtab-map

Fig. 6. Example bugs found by ROZZ.

arrival) can occur, and each kind of event is handled by a
callback function. As an event can occur at any time, its
callback function can be concurrently executed with other
functions. Thus, concurrency bugs can occur in callback
functions due to incorrect synchronization. Figure 6(a) shows
an example bug in nav2 planner. The callback function
footprint callback can be concurrently executed with
the function getFootprint. In footprint callback,
a smart pointer footprint is assigned with a pointer msg
on line 106, and thus the memory pointed by footprint
is freed according to smart-pointer functionality. At the same
time, this smart pointer is still used in getFootprint to
access footprint ->polygon on line 76, causing a use-
after-free bug [35].

(2) 11 bugs are caused by error handling issues. Specifi-
cally, 6 of these bugs are introduced due to missing or incor-
rect security checks of invalid user data and bad configuration
parameters; and the other 5 bugs are introduced due to incor-
rect error handling after correct security checks. Figure 6(b)
shows an example bug in nav2 controller. The function
transformLaserScanToPointCloud can throw one

explicit exception and one implicit exception at runtime.
Only the explicit exception is caught on line 294, but the
implicit exception of “runtime error” type is not caught [36].

(3) 2 bugs are caused by stack memory issues. One bug is
caused by using a local variable in a new thread, and the other
bug is caused by excessive recursive calls. Figure 6(c) shows
an example bug in rtab-map. In the construction function
of the class CoreWrapper, a local variable tfDelay is
defined on line 141 in the main thread, but this variable
is accessed on line 580 in a new thread created via new
std::thread. As the new thread cannot access the main
thread’s stack, a stack-overflow bug occurs [37].

C. Comparison to Existing Approaches
We experimentally compare ROZZ to two state-of-the-art

approaches of testing robotic programs, Ros2-fuzz [10] and
ASTAA [38]. Ros2-fuzz is an automated fuzzing approach
based on AFL [2] to test robotic programs in ROS2. This
approach mutates messages for specific topics in a given
ROS node. As Ros2-fuzz is open-source, we built it from
the source code. ASTAA is a robustness-testing approach
for robotic programs. It randomly mutates messages between
ROS nodes, and it can also drop several messages at runtime
to simulate communication instability. As ASTAA is close-
source, we implement an ASTAA-like tool by modifying
ROZZ to only enable data mutation of sensor messages and
randomly drop messages without using program feedback.

TABLE IV
COMPARISON RESULTS.

Program Ros2-fuzz ASTAA-like ROZZ
Branch Found bug Branch Found bug Branch Found bug

nav2 bt navigator 1.8K 0 23.7K 1 24.3K 3
nav2 planner 1.6K 0 26.4K 2 27.9K 6
nav2 recoveries 4.8K 0 15.1K 1 15.8K 2
nav2 controller 3.1K 0 35.2K 3 37.6K 3
nav2 amcl 0.7K 0 11.9K 2 12.2K 9
Total 12.0K 0 112.3K 9 117.8K 23

In the experiments, we select five programs whose names
contain “nav2” in Table I, and run Ros2-fuzz, the ASTAA-
like tool and ROZZ to test these programs with a robot
navigation task for 24 hours. Table IV shows the comparison
results, including covered code branches and found bugs.

ROZZ finds all the 9 bugs found by Ros2-fuzz and the
ASTAA-like tool, and it also finds 14 bugs missed by these
approaches with higher code coverage. Indeed, Ros2-fuzz
and ASTAA generate test cases about only messages between
ROS nodes, and thus much code about handling different
user data and configuration parameters is not covered dur-
ing fuzzing. By contrast, ROZZ generates test cases from
multiple dimensions (including user data, configuration pa-
rameters and sensor messages), and thus ROZZ covers more
code missed by Ros2-fuzz and ASTAA. Moreover, ROZZ
uses distributed branch coverage to more effectively guide
test-case generation for multiple ROS nodes, and performs
temporal mutation with three common patterns (ASTAA con-
siders only one of these patterns, namely message dropping)
to more effectively cover code about temporal features. For
these reasons, ROZZ produces better results than Ros2-fuzz
and the ASTAA-like tool in the experiments.

By analyzing the growth of covered branches along with
the testing time, we observe that the three tools cover less and
less new code branches over time, as many code branches
have been covered by the test cases generated from the earlier
mutation during fuzzing. Even so, we observe that ROZZ
covers more new code branches in the latter tests, thanks to
our multi-dimensional generation method, distributed branch
coverage and temporal mutation strategy. We randomly select
two of the tested ROS programs, namely nav2 planner and
nav2 controller, and show their results in Figure 7.

D. Fuzzing Robotic Programs in ROS1

ROZZ is also applicable to testing robotic programs in
ROS1. Thus, we use ROZZ to test three common robotic
programs in ROS1 with ASan, including move base [39],
nav1 amcl [40] and hector mapping [41]. We run move base
and nav1 amcl for a robot navigation risk, and run move base
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Fig. 7. Growth of covered code branches with the testing time.

and hector mapping for a map building risk. We test each
program with its related task for 24 hours. Similar to
Section IV-A, we also run official test suites or benchmarks
of each program for 24 hours to validate testing-coverage
improvement of ROZZ. Table V shows the testing results.

TABLE V
RESULTS OF FUZZING ROBOTIC PROGRAMS IN ROS1.

Program Covered branch Found bug
Fuzzing Test suite InvalidPtr Exception All

move base 36.4K 31.9K 0 2 2
nav1 amcl 12.5K 10.9K 2 2 4
hector mapping 13.1K 11.5K 0 0 0
Total 62.0K 54.3K 2 4 6

Compared to running test suites, ROZZ covers 14% more
code branches in the tested programs, benefiting from our
fuzzing approach based on ROS properties. Note that we find
no bug when running official test suites or benchmarks. Due
to the testing-coverage improvement, ROZZ finds 6 real bugs
with no false positive, including 2 invalid-pointer accesses
and 4 uncaught exceptions. We have reported these bugs
to related ROS developers, but we have not received any
response. Indeed, the github repositories of the three tested
programs have not been updated for a long time.

V. LIMITATION AND FUTURE WORK

ROZZ still has some limitations. First, ROZZ can only test
C/C++ programs, as it uses Clang for code instrumention; we
plan to extend ROZZ to Python programs. Second, ROZZ
is limited in covering special execution situations, such as
error handling cases and infrequent thread interleavings; we
plan to introduce fault injection [42], [43] and concurrency
fuzzing [8], [44] in ROZZ to further improve testing cover-
age. Finally, ROZZ can only detect memory bugs at present;
we plan to apply existing approaches [11], [12] in ROZZ to
detect semantic bugs, such as anomalous robotic behaviors.

VI. RELATED WORK

Fuzzing. In practice, fuzzing has been widely used to test
infrequently-executed code and detect bugs. Most fuzzing
approaches [2]–[9] are coverage-guided, namely they auto-
matically mutate and generate program inputs according to
the program feedback of code coverage. Specifically, for a
given program input, if it makes the tested program cover
new code branches or basic blocks, this input is considered to
be an interesting seed, and the fuzzing approach puts it into a
seed pool for further test-case mutation and generation. Then,
the fuzzing approach selects a seed from the seed pool, and
mutates it to generate new inputs as new test cases, making

up a basic fuzzing loop. Existing fuzzing approaches focus
on improving testing efficiency and effectiveness from seed
selection [6], [7], [9], seed mutation [4], [5], [8], etc.

Several recent approaches [10]–[14] explore the applica-
tion of fuzzing to robotic programs. For example, Delgado et
al. [11] propose a fuzzing approach to test robotic behaviors
based on SMACH state machines [45]. This approach is
grammar-based and generates random values as input keys
of state machines, and it monitors executed states to collect
logs at runtime. These logs are semi-automatically analyzed
to detect the anomalies of robotic behaviors.

However, existing fuzzing approaches are still limited in
testing ROS programs, due to neglecting ROS properties,
including multi-dimensional inputs, distributed node model
and temporal features. To solve this problem, ROZZ consid-
ers ROS properties and uses three characteristic techniques
to improve fuzzing on ROS programs.
Testing robotic programs. Some approaches exploit unit
testing [46], [47], integration testing [48], [49] or mutation
testing [38], [50] to check the robustness and reliability of
robotic programs. For example, Katz et al. [50] propose a
testing approach to detect execution anomalies in robotic
programs. This approach generates the inputs based on
mutation, monitors program execution and creates clusters
of execution profiles to represent nominal execution. If the
distances between a given execution profile and these clusters
are too large, this execution profile indicates that anomalies
can occur. Different from fuzzing, these approaches do not
use program feedback to guide test-case generation, and thus
they are limited in generating efficient test cases.
Verifying robotic programs. Some approaches [51]–[56]
use formal verification to statically check robotic programs.
For example, Carvalho et al. [54] propose a model checking
approach to verify system-wide safety properties based on
message passing for ROS applications, according to given
loose specification of the expected behaviors of the individual
nodes. Compared to runtime testing, these approaches can
achieve higher checking coverage without actually running
the program. But they require the user to manually provide
detailed specifications, and they spend much time on state
exploration when the checked program is large and complex.

VII. CONCLUSION

In this paper, we develop a novel and automated fuzzing
framework named ROZZ, to effectively test ROS programs
based on ROS properties. ROZZ uses a multi-dimensional
generation method to generate test cases of ROS programs
from multiple dimensions, a distributed branch coverage to
describe the overall code coverage of multiple ROS nodes in
the robot task, and a temporal mutation strategy to generate
test cases with temporal information. We have used ROZZ to
test 10 robotic programs in ROS2, and found 43 real bugs.
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